人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇一
各位评委好!
今天我说课的题目是《平面直角坐标系》,我准备从以下几个方面对本节课的教学设计进行说明。
1、教材的地位和作用
本节教材是初中数学七年级下册第六章《平面直角坐标系》第1节第2课时的内容,是初中数学的重要内容之一。平面直角坐标系的引入,标志着数学由常量数学向变量数学的迈进,这是学习数学知识的一个飞跃。
2、教学目标
(3)情感态度与价值观:培养学生细致认真的学习习惯。通过讲述笛卡儿创立坐标系的故事,激励学生敢于探索,勇攀科学高峰。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:(1)在给定的坐标系中,会根据点的位置找到坐标,由坐标描出点的位置;(2)坐标系中点的坐标特征是全章的重点,在学习函数的图象时都要用到,因而要对这部分知识反复的练习和应用并渗透数形结合的思想。
本节课我主要采用“学案导学,展示激学”的教学模式,并辅助采用问题式、互动式结合的教学方法,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,给学生足够的思考交流时间和空间,发挥学生的主体地位作用。另外,在教学过程中,采用多媒体辅助教学,激发学生的学习兴趣,增大教学容量,提高教学效率。
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)激发兴趣 引出课题
然后我念几组有序数对,请对应座位上同学站起来并喊“到”。
借助多媒体演示,同学们很快发现这些同学连成“心形线”,并产生浓厚兴趣!这时我作补充:早在十七世纪法国数学家笛卡儿就借助坐标系,用方程表示了“心形线”,并讲述笛卡儿与他观察蜘蛛织网发现平面直角坐标系的故事。学生对此感到好奇并产生持续的兴趣。
(2)研读课本 自学探究
接着让学生认真研读课本6.1.2平面直角坐标系,并完成学案“复习引入”和新课学习。我下去检查督促,大家完成后我用多媒体精讲释疑。
(3)小组合作 展示交流
解答后,我将班级学生分成七个小组,完成活动一、活动二、活动三。每个活动由两个组完成,一个组展示,一个组补充说明。最后一个组总结,全班补充。讨论交流期间我下去督促指导。讨论出结论后,我鼓励每个小组展示自己的讨论成果,其他小组可以补充,纠正。我作适当的引导!
(4)当堂检测 对比反馈
学案活动完成后,运用多媒体展示学案上的当堂检测,增强竞争机制。并及时批改、点评、表扬。下课时收上学案,及时批改。
(5)布置作业 巩固提高
以作业的巩固性和发展性为出发点,我设计了必做题和选做题。
必做题:练习册6.1.2
选做题:习题6.1第4,5题
上网浏览《世界著名数学家传记》,阅读笛卡儿的传记,并搜索心形线的感人故事。
以上是我对本节课的见解,谢谢!
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇二
《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
3、能在给定的直角坐标系中,由点的位置写出它的坐标。
2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;
3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;
2、坐标轴上点的坐标有什么特点的总结。
(1)你是怎样确定各个景点位置的?
1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
学生自学课本,理解上述概念。
2、例题讲解
(出示投影)例1
例1写出图中的多边形abcdef各顶点的坐标。
a、第四象限b、第三象限c、第二象限d、第一象限
【考点】点的坐标。
【专题】计算题。
【分析】由点在x轴的条件是纵坐标为0,得出点a(﹣2,n)的n=0,再代入求出点b的坐标及象限。
【解答】解:∵点a(﹣2,n)在x轴上,
∴n=0,
∴点b的坐标为(﹣1,1)。
则点b(n﹣1,n+1)在第二象限。
故选c。
【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负。
a、(3,2)b、(2,3)c、(﹣3,﹣2)d、(﹣2,﹣3)
【考点】点的坐标。
【分析】根据到坐标轴的距离判断出横坐标与纵坐标的长度,再根据第三象限的点的坐标特征解答。
【解答】解:∵点m到x轴的距离为3,
∴纵坐标的长度为3,
∵到y轴的距离为2,
∴横坐标的长度为2,
∵点m在第三象限,
∴点m的坐标为(﹣2,﹣3)。
故选d。
【点评】本题考查了点的坐标,难点在于到y轴的距离为横坐标的长度,到x轴的距离为纵坐标的长度,这是同学们容易混淆而导致出错的地方。
1.点a(3,—1)其中横坐标为xx,纵坐标为xx。
2.过b点向x轴作垂线,垂足点坐标为—2,向y轴作垂线,垂足点坐标为5,则点b的坐标为。
3.点p(—3,5)到x轴距离为xx,到y轴距离为xx。
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇三
⑴知识结构:
⑵重点、难点分析:
2、建议:
(1)概念的引入
(2)讲授概念:
(3)练习,深入地理解概念:
目标:
5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.
重点:
1、掌握象限或坐标轴上的点的坐标的特点.
2、会求已知点关于坐标轴或原点的对称点的坐标.
用具:直尺、计算机
过程:
1、提出问题,主动探索
下面看例1
例1、指出下列各点所在象限或坐标轴;
你能发现什么规律吗?
通过学生的分组讨论后,可总结如下:
练习: 习题13.1的第三题
第 1 2 页
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇四
《平面直角坐标系》反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境。这节课我以生活中旅游宁夏银川的常识引入主题,让学生在宁夏政区图上找出石嘴山的具体位置。很自然地就引起了学生的极大关注和兴趣,自觉地投入到学习中,这样就会有助于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,在课堂上让学生讲一讲,画一画,尽可能多的为学生创造自主学习、合作交流的机会,使学生成为学习的主体,促使他们主动参与、积极探究。
《平面直角坐标系》这课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。
平面直角坐标系教学反思
你能从右图上找出石嘴山的位置吗?
用现实例子来体现平面内找点--------通过在地图中找位置,让学生用一对数描述宁夏银川的位置,让学生理解在平面内确定点要用一对数。
接着通过影剧院的两张电影票中的3个问题让学生认识到在一个平面内确定一个物体的位置既要有方向还要有距离。这里的设计主要是让学生有一种认识在平面内描述位置要用两个数据,为下面强调“方向”做好准备,并且加入熟悉的同学的姓名,充分激发学生的兴趣。
这里主要还是以书本上的步骤为主,通过一些多媒体的形象演示让学生更快的掌握。教学中主要是为了让学生更快更容易的理会知识。另外在引入上,我将书上的例子改变为电影票中的座位号,并将本班学生故事的形式编入到情境中,贴近现实生活,且引起了学生极大的兴趣。但是在重点的讲解上还是有些不到的地方,比如在引入上,时间用的较多;在概念知识的给予上,有些机械化,语言的启发上还是有待改进。学生对这类问题还不能很快的接受,应在充分的时间内给予各种变式题的训练,这样学生掌握的情况会更好。在讲解象限时,其实这里要是有一个小的动画或是有个红色的重点提示,让学生认识第一象限的所在,那就更完整了。
我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以,我设计了4组练习,主要是①找坐标;②找点;③象限内点符号知识。④现实运用。在这个练习中尤其是前3个练习是本节课的关键,在找坐标中我最满意的就是设置了”在电影院中找座位号”的小游戏,把教师当作电影院,在教室里建立了平面直角坐标系,让学生自己说出所在位置的坐标。让全班同学都能参与其中,不仅活跃了课堂气氛,还让学生能够更加深切的感受点的坐标。
本课设计了小结,让学生来总结本节课有那些收获和困惑,不仅归纳了知识点,还注重了数学思想方法在课堂中的渗透。拓宽了学生的知识面,培养了学生的发散思维能力和创新能力。
《平面直角坐标系》这节课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。
本课灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏活动等。调动了学生学习的积极性,充分发挥了学生的主体作用。通过游戏活动让学生再次感知点和数的对应关系,然后上升到理性,从而突破了难点,效果应该很好,体现了素质教育要求。课堂拓展了学生学习空间,给学生充分发表意见的自由度。
本课设计了小结,不仅归纳了知识点,还注重了数学思想方法在课堂中的渗透。拓宽了学生的知识面,培养了学生的发散思维能力和创新能力。并向学生展示了人类认识世界是由特殊到一般、具象到抽象、一维到多维等认识规律,使学生站在一个新的高度来认识所学内容,培养了学生探求、归纳、总结等认识客观世界的认知方法。
在整个教学教程中,我始终结合教材内容,由课题引入到问题解决至始至终向学生渗透数学应用意识,培养了学生应用数学的能力,揭示了数学源于生活,又高于生活,数学与人们日常生活息息相关得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇五
《平面直角坐标系》是人教实验版七年级下学期第六章第一节第二课时。本节课的教学设计立足于问题情境的创设,把原来枯燥的平面直角系赋予一定的现实意义,让学生在实际问题中学习知识,力求避免空洞的教学。
情景(1):新课程强调:要让学生接触到来自身边的数学,体会数学所具有的巨大应用价值,我设计了活动“你知道我在哪里吗?”。
让学生站成等距离的一排,互相确定自己的位置。从学生的答案中,归纳出满足数轴的三要素:一个对象(基准)、一个方向、一个距离。从而进入第一个知识点教学——用数轴来刻画直线上位置关系。
这样设计的目的是通过学生自己位置的确定,唤起学生已有的生活经验,能够较好的体现数学的现实性,充分吸引学生的注意力,激发学生学习兴趣。
②如果小兵在一个长方形的操场上,你用什么方法可以确定小兵的位置?
③如果小兵在一个广阔无垠的草地上,你用什么方法可以确定小兵的位置?
《标准》强调:知识的衔接要体现螺旋上升的原则。所以这三个问题的安排有一定的层次性,即由线到面,由有限到无限,由易到难,即尊重学生的人格,关注个体差异,满足不同学生的学习需要,激发学生的学习积极性,使每个学生都能得到充分发展,又适当利用类比的方法,使学生对点与坐标的对应关系顺利地实现由一维到二维的过渡,引出平面直角坐标系。
经过这样一串问题的设计,在教学过程中加深了学生对建立平面直角坐标系的必要性的理解,突破了本章的教学难点,使得学生认识平面直角坐标系水到渠成。
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇六
本章教学时间约需7课时,具体分配如下(仅供参考):
数学活动
(一)本章知识结构
(二)内容安排
(三)课程学习目标
1.通过实例认识有序数对,感受它在确定点的位置中的作用;
5.结合实例,了解可以用不同的方式确定物体的位置.
(一)注意加强知识间的相互联系
(二)突出数形结合的思想,体现平面直角坐标系的作用
(三)注重学生的认知规律
(四)内容编写生动生动活泼
(一)密切联系实际
(二)准确把握教学要求
(三)注意留给学生思考的空间
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇七
⑴知识结构:
⑵重点、难点分析:
2、教学建议:
(1)概念的引入
(2)讲授概念:
(3)练习,深入解概念:
5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.
1、掌握象限或坐标轴上的点的坐标的特点.
2、会求已知点关于坐标轴或原点的对称点的坐标.
教学用具:直尺、计算机
1、提出问题,主动探索
下面看例1
例1、指出下列各点所在象限或坐标轴;
你能发现什么规律吗?
通过学生的分组讨论后,可总结如下:
练习: 习题13.1的第三题
例2、在直角坐标系中,标出下列各对点的位置,
并发现其中的规律.
(1)(3,5),(2,5)
(2)(1,2),(1,-3)
(3)(4,4),(6,6)
(4)
例3、 在直角坐标系中,描出下列各点
⑴(2,1), (-2,1)
⑵(-3,4), (-3,-4)
⑶(5,-4), (-5,-4)
解:(从图中观察出的点的位置)特点 两点坐标间关系
(1)两点关于y轴对称 横坐标为相反数,纵坐标相同
(2)两点关于x轴对称 横坐标相同,纵坐标为相反数
(3)两点关于原点对称 横坐标互为相反数,纵坐标互为相反数
答:(-10,-3);(10,3);(10,-3).
你想过这其中的道理吗?
作业 :习题13.1b组的1-3.
平面直角坐标系的说课初中数学平面直角坐标系说课稿篇八
1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。
二:教学重点
能画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。
三:教学难点
能能建立平面直角坐标系;求出点的坐标,由点的位置写出它的坐标。
四:教学时间
三课时
五:教学过程
第一课时
一)引入新课
1:要在平面内确定一个地点的位置需要几个数据?
二)新课
1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)
2:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)
3:两条坐标轴把平面分成四部分:右上部分叫第一象限,其它三部分按逆时针方向依次叫第二象限、第三象限、第四象限。
4:怎样求平面内点的坐标?
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。
例1 写出多边形abcdef各顶点的坐标
y
a b
f o c x
e d
5:想一想
(2) 线段db的位置有什么特点?
(3) 坐标轴上点的坐标有什么特点?
6:练习p131 做一做
三:小结 (1)怎样画平面直角坐标系?
(2)怎样求平面内点的坐标?
(4) 知道点的坐标怎样描出点?
四:作业 p132
第二课时
一:复习
1) 怎样画平面直角坐标系?
(学生练习画平面直角坐标系)
(2) 怎样求平面内点的坐标?
y
a
b c
o x
已知等边三角形的边长为2cm,求出各顶点的坐标?
(3) 道点的坐标怎样描出点?
二:新课
例 在直角坐标系中描出下列各点,并将各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5)
(2)-9,3),(-9,0),(-3,0),(-3,3)
(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9)
(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7)
(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)
观察所得的图形,你觉得它像什么?
y
o x
三:练习 p134做一做
四:作业 p135习题5.4(1、2)
第三课时
一;新课引入与复习
1) 怎样画平面直角坐标系?画平面直角坐标系时应注意些什么?
2)怎样求平面内点的坐标?(对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。)
二:新课
例3如图,矩形abcd的长与宽分别是6,4。建立适当的直角坐标系,并写出各个顶点的坐标。
y
b a
解:如图:以点c为坐标原点,分别以cd、cb所在
直线为x轴y轴,建立直角坐标系。此时c(0,0)
o
c d x
由cd长为6,cb长为4,可得d,b,a的坐标分别为d(6,0),b(0,4),a(,4)
思考:(还可以建立直角坐标系吗?与同学交流)
例4 对于边长为4的正三角形abc,建立适当的直角坐标系,并写出各个顶点的坐标。
a
b c
三:小结 建立适当的直角坐标系,求的坐标要注意以下几点?
1) 要找出坐标原点。
2) 要说明横轴与纵轴的位置。
3) 要求出必要的线段的长度。
四:练习p161(议一议)与随堂练习
p162习题的第一题
五:作业 p162习题的第二题
六:课外练习p162(试一试)
鱼的变化第二课时
一:复习 点的坐标的特征
1) 关于横轴对称的两点横坐标相等,纵坐标相反
2) 关于纵轴对称的两点纵坐标相等,横坐标相反
3) 关于原点对称的两点横坐标相反,纵坐标相反
二:看图确定点的坐标
a c
b d
y
a d
b c
x
三;练习
1) p142做一做
2) p143随堂练习
四:小结 p143议一议
五:作业 p144习题(做在书上)
第五章 回顾与思考
一:学生看书回答问题
1) 在平面内,确定点的位置一般需要几个数据?举例说明。
3) 在直角坐标系中,横、纵坐标系轴上点的坐标各有什么特点?举例说明。
4) 在直角坐标系中,将图形沿坐标轴方向平移,变化前后的对应点的坐标有什么异同?举例说明。
5) 在直角坐标系中,将图形上各点的横坐标或纵坐标加上一个数(或乘-1),变化前后的图形有什么关系?举例说明。
二:练习
p145复习题a组
三:小结点的坐标• 一:点p(a,b)到x轴的距离是︱b︱,到y轴的距离是︱a︱,到原点的距离是√a2+b2• 二:对称性 1)关于x轴对称的两点横坐标相等,纵坐标互为相反。• 2)关于y轴对称的两点横坐标互为相反,纵坐标相等。• 3)关于原点轴对称的两点横坐标互为相反,纵坐标互为相反。• 三:平行 1)两点的横坐标相等,纵坐标不相等,则这两点所在的直线与y轴平行,与x轴垂直。 2)两点的横坐标不相等,纵坐标相等,则这两点所在的直线与x轴平行,与y轴垂直。举例• 1)点p(-3,4)与x轴对称的点的坐标为 。与y轴对称的点的坐标为 。与原点轴对称的点的坐标为 。• 2)点a(6,-3)到x轴的距离为 ,• 到y轴的距离为 ,到原点轴的距离为 • 3)点a(a,-4)与b(2,b)所在的直线与x轴平行,则a ,b .所在的直线与y轴平行,则a ,b .• 4)点a(a,b)在第一、三象限的角平分线上,则a、b的关系是 。在第二、四象限的角平分线上,则a、b的关系是 。 练习• 1)点p(4,-3)与x轴对称的点的坐标为 。与y轴对称的点的坐标为 。与原点轴对称的点的坐标为 。• 2)点a(-2,-3)到x轴的距离为 ,• 到y轴的距离为 ,到原点轴的距离为• 3)点a(a-1,-4)与b(2,b+3)所在的直线与x轴平行,则a ,b .所在的直线与y轴平行,则a ,b .• 4)点a(-a,b)在第一、三象限的角平分线上,则a、b的关系是 。在第二、四象限的角平分线上,则a、b的关系是点的平移练习• 一:1)点p(-2,3)沿x轴的方向向右平移四个单位长度得到的点的坐标为 。• 2)点p(-2,3)沿x轴的方向向左平移四个单位长度得到的点的坐标为 。• 3)点p(-2,3)沿y轴的方向向上平移四个单位长度得到的点的坐标为 。 • 4)点p(-2,3)沿y轴的方向向下平移四个单位长度得到的点的坐标为 。• 5)点p(-2,3)沿x轴的方向先向右平移四个单位长度再沿y轴的方向向下平移三个单位长度得到的点的坐标为 。• 6)点p(-2,3)沿x轴的方向先向左平移二个单位长度再沿y轴的方向向下平移三个单位长度得到的点的坐标为 。• 5)点p(-2,3)沿y轴的方向先向上平移四个单位长度再沿x轴的方向向右平移三个单位长度得到的点的坐标为 。• 6)点p(-2,3)沿y轴的方向先向下平移二个单位长度再• • • • 沿x轴的方向向左平移三个单位长度得到的点的坐标为 。• 二1)把点p(3,-2)沿x轴方向向 平移 个单位得到点a(5,-2)• 2) 把点p(3,-2)沿x轴方向向 平移 个单位得到点a(0,-2)• 3) 把点p(3,-2)沿y轴方向向 平移 个单位得到点a(3,2)• 4) 把点p(3,-2)沿y轴方向向 平移 个单位得到点a(3,1)点的坐标练习• 1)点p(3,-4)沿x轴的方向向右平移四个单位长度得到的点的坐标为 。• 2)点p(-2,5)沿x轴的方向向左平移四个单位长度得到的点的坐标为 。• 3)点p(0,-3)沿y轴的方向向上平移四个单位长度得到的点的坐标为 。• 4)点p(-1,-3)沿y轴的方向向下平移四个单位长度得到的点的坐标为 。• 5)点p(4,-2)沿x轴的方向先向右平移四个单位长度再沿y轴的方向向下平移三个单位长度得到的点的坐标为 。• 6)点p(-2,0)沿x轴的方向先向左平移二个单位长度再沿y轴的方向向下平移三个单位长度得到的点的坐标为 。• 7)点p(-1,3)沿y轴的方向先向上平移四个单位长度再沿x轴的方向向右平移三个单位长度得到的点的坐标为 。• 8)点p(-2,1.5)沿y轴的方向先向下平移二个单位长度再沿x轴的方向向左平移三个单位长度得到的点的坐标为 。• • • 9) 把点p(-2,-2)沿x轴方向向 平移 个单位得到点a(5,-2)• 10) 把点p(3,2)沿x轴方向向 平移 个单位得到点a(0,-2)• 12) 把点p(3,-2)沿y轴方向向 平移 个单位得到点a(3,2)• 13) 把点p(-3,-4)沿y轴方向向 平移 个单位得到点a(3,1)• 14)点p(4,-2)与x轴对称的点的坐标为 。与y轴对称的点的坐标为 。与原点轴对称的点的坐标为 。• 15)点a(-4,-1)到x轴的距离为 ,• 到y轴的距离为 ,到原点轴的距离为 • 16)点a(a,3)与b(-2,b)所在的直线与x轴平行,则a ,b .所在的直线与y轴平行,则a ,b .• 17)点a(a,b)在第一、三象限的角平分线上,则a、b的关系是 。在第二、四象限的角平分线上,则a、b的关系是 。• 18)点p(-2,-3)与x轴对称的点的坐标为 。与y轴对称的点的坐标为 。与原点轴对称的点的坐标为 。• 19)点a(5,-2)到x轴的距离为 ,• 到y轴的距离为 ,到原点轴的距离为• 20)点a(a+1,-4)与b(2,b+3)所在的直线与x轴平行,则a ,b .所在的直线与y轴平行,则a ,b .• 21)点a(a,-b)在第一、三象限的角平分线上,则a、b的• • • • 关系是 。在第二、四象限的角平分线上,则a、b的关系是• 22)x轴上的 坐标为0,y轴上的 坐标为0。• 23)点p(a,b)若a=0,则点p在 ,若b=0则点p在 。若ab=o,则点p在 。