最新鸽巢问题单元教学设计大全(18篇)

时间:2025-06-02 作者:琴心月

教学计划需要精心编写和反复修改,以确保教学的系统性和严谨性。一起来看看下面这些教学计划范文,或许能够给您带来一些灵感。

最新鸽巢问题单元教学设计大全(18篇)篇一

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。

可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。

1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3、通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

1、具体操作,感知规律。

教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

(1)学生汇报结果。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(2)师生交流摆放的结果。

(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。

质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

2、假设法,用“平均分”来演绎“鸽巢问题”。

1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

学生思考——同桌交流——汇报。

2汇报想法。

预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

3学生操作演示分法,明确这种分法其实就是“平均分”。

1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。

根据学生回答板书:5÷2=2……1。

(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。

根据学生回答,师边板书:至少数=商+余数?

至少数=商+1?

2、师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。

……。

7÷5=1……2。

8÷5=1……3。

9÷5=1……4。

观察板书,同学们有什么发现吗?

得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

板书:至少数=商+1。

师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

课件出示习题.:

1、三个小朋友同行,其中必有几个小朋友性别相同。

2、五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

3、从电影院中任意找来13个观众,至少有两个人属相相同。

[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。

这节课我们学习了什么有趣的规律?请学生畅谈,师总结。

最新鸽巢问题单元教学设计大全(18篇)篇二

教学内容:教科书第68、69页例1、2。

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

教学重点:分配方法。

教学难点:分配方法。

教学方法:列举法分析法。

学习方法:尝试法自主探究法。

教学用具:课件。

教学过程:

一、定向导学(3分)。

(一)游戏引入。

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(二)揭示目标。

理解并掌握解决鸽巢问题的解答方法。

二、自主学习(8分)。

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

三、合作交流(8)。

1、出示例2。

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1(至少放3本)。

8÷3=2……2(至少放4本)。

10÷3=3……1(至少放5本)。

4、做一做。

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

四、质疑探究(5分)。

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

五、小结检测(10)。

(一)小结。

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测。

1、填空。

(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。

(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。4、任意给出3个不同的自然数,其中一定有2个数的'和是()数。

2、选择。

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业(6分)。

完成课本练习十二第2、4题。

板书。

抽屉原理。

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

最新鸽巢问题单元教学设计大全(18篇)篇三

“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。

兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。借机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与。

文档为doc格式。

最新鸽巢问题单元教学设计大全(18篇)篇四

:教材第70页例3及练习十三相关题目。

1.在理解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。

2.经历把实际问题转化为鸽巢问题的过程,了解用“鸽巢原理”解题的一般步骤,恰当运用“鸽巢原理”解决问题。

3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:能运用“鸽巢原理”解决实际问题。

教学难点:能根据题意设计“鸽巢”。

教学准备:多媒体课件。

(二次备课)。

1.课件出示下列问题。

(1)把5只鸽子放进4个笼子里,总有一个笼子里至少放进()只鸽子。

(2)把7本书放进4个抽屉里,总有一个抽屉里至少放进()本书。

2.导入新课:上节课我们了解了“鸽巢原理”,这节课我们就用“鸽巢原理”解决问题。

点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)。

学生提出猜想。

分组讨论:如何把这道题转化为“鸽巢问题”?

这道题其实就是把摸出的球(鸽子)放在两种颜色的“鸽巢”中,结论就是有一个颜色“鸽巢”中至少有2个。

根据“鸽巢原理”(一),只要摸出的球的个数比它们的颜色种数多1,就能保证一定有2个球是同色的,所以答案是至少要摸出3个球。

有两种颜色,只要摸出的球比它们的颜色至少多1,就能保证有两个球同色。

2.引导学生总结用“鸽巢原理”解决问题的一般步骤。

(1)确定什么是鸽巢及有几个鸽巢。

(2)确定分放的物体。

(3)用倒推的方法找到答案。

1.完成教材第70页“做一做”第2题。

2.完成教材练习十三第3、4题。

一副扑克牌(不包括大、小王)有4种花色,每种花色各有13张,现在从中任意抽牌。

(1)最少要抽(13)张牌,才能保证一定有4张牌是同一种花色的。

(2)最少要抽(14)张牌,才能保证一定有2张牌是不同种花色的。

(3)最少要抽(14)张牌,才能保证一定有2张牌是数字相同的。

今天我们通过学习进一步理解了“鸽巢原理”,并运用它解决实际问题。

教材练习十三第5、6题。

独立回答问题。

教师根据学生预习的情况,有侧重点地调整教学方案。

独立思考后,在小组内讨论怎样用“鸽巢原理”解决这些问题。

最新鸽巢问题单元教学设计大全(18篇)篇五

一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。

一、情境导入,初步感知。

兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。

二、教学时以学生为主体,以学定教。

由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的'同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。

三、通过练习,解释应用。

四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。

不足:

1、学生们语言表达能力还有待提高。

2、课堂中教师与速较快。

将本文的word文档下载到电脑,方便收藏和打印。

最新鸽巢问题单元教学设计大全(18篇)篇六

鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。因此,在录制一师一优课时我想到了给学生讲这一节课,使学生更加清楚的认识到数学是源于生活,并运用于生活中的。

鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,许多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。因此,在讲课开始我先用纸牌游戏中引出今天的鸽巢问题,让学生带着好奇心来学习本节课内容。接着我出示例题,先找一位同学演示3支笔放进2个笔筒中应该怎么放,并记录下来,使学生明白小组应该怎样进行活动并记录。接着出示课本例1的题目,学生小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位学生进行演示加强大家的认识。我有介绍了刚才学生们实验的方法叫做枚举法。并通过观察引出概念总有一个笔筒里至少有2支铅笔。接着让学生们转换思想求实有没有更简单的方法得出结论,学生通过实验和讨论得出可以用平均分的方法得到同样的结论。并把其转化为算式。

接着增加铅笔和笔筒的个数仍能得到相同的结论,由此学生发现当铅笔数比笔筒数多1时,总有一个笔筒至少有2支铅笔的结论。把铅笔和笔筒换成其他物品学生还能相似的结论,说明学生已经可以学移致用了。之后介绍鸽巢问题的发现者,增加学生的知识面。

最后,我又引到游戏揭示答案,再通过几道层次递进的题目的练习,使学生能够灵活运用鸽巢问题,从而达到本节课的教学目的。

文档为doc格式。

最新鸽巢问题单元教学设计大全(18篇)篇七

1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。

2、教材地位及作用。

本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

(二),才能灵活运用这一原理解决各种实际问题。

要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。

根据《数学课程标准》和教材内容以及学生的学情,我确定本节课学习目标如下:

知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。

能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。

情感性目标:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,感受到数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”解决的窍门进行反复推理。

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。根据六年级学生的理解能力和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。

学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高解决问题的能力,感受数学学习的乐趣。

在教学设计上,我本着“以学定教”的设计理念,把教学过程分四环节进行:设疑导入,激发兴趣——自主操作,探究新知——归纳小结,形成规律——回归生活,灵活应用。

在导入部分,通过抽扑克牌“魔术”,激发学生的兴趣,引入新知。

根据学生学习的困难和认知规律,我在探究部分设计了三个层次的数学活动。

(一)实物操作,初步感知。

学生通过例1要求通过“把4枝铅笔放入3个笔筒”的实际操作,解决3个问题:

1、怎样放?

重点是让学生明确如果只是放入每个笔筒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。

2、共有几种放法?

这里主要是孕伏对“不管怎样放”的理解。

3、认识“总有一个”的意义。

通过观察笔筒中铅笔枝数,找出4种放法中铅笔枝数最多的笔筒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个笔筒放的枝数是最多的,分别是2枝,3枝和4枝。

(二)脱离具体操作,由形抽象到数。

通过“思考:把5枝铅笔放入4个笔筒,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:

1、理解“至少”的含义,准确表述现象。

(1)通过观察表格中枝数最多的笔筒里的数据,让学生在“最多”中找“最少”。

(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个笔筒里至少放入2枝铅笔的结论。

2、理解“平均分”的思路,知道为什么要“平均分”。抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个笔筒里至少是几枝的方法——就是按照笔筒数平均分,只有这样才能让最多的笔筒里枝数尽可能少。

3、抽象概括,小结现象。

通过“4枝放入3个笔筒”、”5枝放入4个笔筒”等不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识鸽巢原理。

(三)学生自选问题探究。

首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。

在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。

研究的问题来源于生活,还要还原到生活中去。

在教学的最后,请学生用这节课学的鸽巢原理解释课始老师的魔术问题,进行首尾的呼应;再让学生应用“鸽巢原理”解决的生活中简单有趣的实际问题,激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

最新鸽巢问题单元教学设计大全(18篇)篇八

审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的'除法算式表示思维的过程。

可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。

1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:相关课件相关学具(若干笔和筒)。

游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

1.具体操作,感知规律。

教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

(1)学生汇报结果。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(2)师生交流摆放的结果。

(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。

质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

2.假设法,用“平均分”来演绎“鸽巢问题”。

1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

学生思考——同桌交流——汇报。

2汇报想法。

预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

3学生操作演示分法,明确这种分法其实就是“平均分”。

1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。

根据学生回答板书:5÷2=2……1。

(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。

根据学生回答,师边板书:至少数=商+余数?

至少数=商+1?

2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。

……。

7÷5=1……2。

8÷5=1……3。

9÷5=1……4。

观察板书,同学们有什么发现吗?

得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

板书:至少数=商+1。

师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

课件出示习题:

1.三个小朋友同行,其中必有几个小朋友性别相同。

2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

3.从电影院中任意找来13个观众,至少有两个人属相相同。

……。

[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。

这节课我们学习了什么有趣的规律?请学生畅谈,师总结。

最新鸽巢问题单元教学设计大全(18篇)篇九

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢问题”的灵活应用感受数学的魅力。

重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

多媒体课件。

纸杯。

吸管。

一、课前游戏引入。

生:想。

师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)。

二、通过操作,探究新知。

(一)探究例1。

1、研究3根小棒放进2个纸杯里。

(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。

(4)“总有”什么意思?(一定有)。

(5)“至少”有2枝什么意思?(不少于2枝)。

小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)。

2、研究4根小棒放进3个纸杯里。

(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)。

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。

师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)。

(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是。

3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)。

5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。

这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。

小练习:

1、任意13人中,至少有几人的出生月份相同?

2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?

3、任意13人中,至少有几人的属相相同?”

6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”

最新鸽巢问题单元教学设计大全(18篇)篇十

1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

经历鸽巢原理的探究过程,初步了解鸽巢原理。

理解鸽巢原理,并对一些简单的实际问题加以模型化。

1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)。

2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)。

1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。(ppt)总有:一定有至少:最少。

师:这个结论正确吗?我们要动手来验证一下。

探究之前,老师有几个要求。(一生读要求)。

(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)。

第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)。

第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。

师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)。

总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)。

(4)通过比较,引出“假设法”

引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(ppt演示)。

(5)初步建模—平均分。

师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

生:平均分(师板书)。

师:为什么要去平均分呢?平均分有什么好处?

生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)。

师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

板书:4÷3=1……11+1=2。

师:现在我们把题目改一改,结果会怎样呢?

ppt出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?(引导学生说清楚理由)。

师:为什么大家都选择用假设法来分析?(假设法更直接、简单)。

通过这些问题,你有什么发现?

交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

过渡语:师:如果多出来的数量不是1,结果会怎样呢?

2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

(1)同桌讨论交流、指名汇报。

先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?

再让一生说出5÷3=1……21+1=2。

师:你们同意哪种想法?

(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?

(3)明确:再次平均分,才能保证“至少”的情况。

(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

(2)独立思考后指名汇报。

师板书:7÷3=2……12+1=3。

(3)如果有8本书会怎样?10本书呢?

指名回答,师相机板书:8÷3=2……22+1=3。

师:剩下的2本怎么放才更符合“至少”的要求?

为什么不能用商+2?

10÷3=3……13+1=4。

(4)观察发现、总结规律。

归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)。

师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

1、做一做第1、2题。

2、用抽屉原理解释“扑克表演”。

说清楚把4种花色看作抽屉,5张牌看作要放进的书。

通过这节课的学习,你有什么收获或感想?

最新鸽巢问题单元教学设计大全(18篇)篇十一

教学内容:教科书第68页例1。

教学目标:

1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。

2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。

教学重点:

经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

教学难点:

理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。

教学模式:

学、探、练、展。

教学准备:

多媒体课件一套。

教学过程:。

一、游戏导入。

1.师生玩“扑克牌魔术”游戏。

(2)玩游戏,组织验证。

通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。

2.导入新课。

刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的问题。

二、呈现问题,探究新知。

课件出示自学提示:

(1)“总有”和“至少”是什么意思?

(2)把4支铅笔放进3个笔筒中,可以怎么放?有几种。

不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)。

(3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?

(一)自主探究,初步感知。

1、学生小组合作探究。

2、反馈交流。

(1)枚举法。

(2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(3)假设法。

师:除了像这样把所有可能的情况都列举出来,还有没有别的。

方法也可以证明这句话是正确的呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共有4支,平均分,每个笔筒只能分到1支。

师:你为什么一开始就平均分呢?(板书:平均分)。

生:平均分就可以使每个笔筒里的笔尽可能少一点。

生:平均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

(4)确认结论。

师:到现在为止,我们可以得出什么结论?

生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)提升思维,构建模型。

师:(口述)那要是。

(1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中。

2.建立模型。

师:通过刚才的.分析,你有什么发现?

生:只要铅笔的数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。

师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)。

师:以上这些问题有什么相同之处呢?

生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。

师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)。

三、基本练习。

四、拓展提升。

五、课堂小结。

六、作业布置。

完成课本第71页,练习十三,第1题。

最新鸽巢问题单元教学设计大全(18篇)篇十二

教学内容:

课本p63页第1题,练习十四的第1~6题。

教学目标:

1、使学生初步学会根据除法的意义解决一些简单的实际问题。

2、使学生懂得从数学的角度提出学过的数学问题,并能够解决问题,培养学生应用数学的意识。

3、培养学生积极参与数学学习活动的兴趣,对数学有好奇心和求知欲。在交流中养成倾听他人想法以及尊重他人与人进行合作的良好习惯。

教学重点:

求一个数是另一个数的几倍是多少的简单问题以及涉及乘除两步计算的实际问题。

教学难点:

用乘法口诀求商,按除数相同的规律进行整理。

教学准备:

实物投影、主题图。

教学过程:

一、创设情景,引入谈话。

师:同学们,我们前几天学过了哪些知识,谁能说一下这些小朋友在干什么?

【设计意图】:直奔主题,让学生在最短的时间内直接明确学习的内容和任务。

二、合作交流,探求新知。

1、教学第63页主题图。

师:你看懂了什么?

引导学生观察主题图,同桌互相说一说题意。

生:咱们把除法算式有规律地排一下,还可以利用乘法口诀表的排列方式整理除法算式。

师:(1)发下一张空白的表格纸。

(2)组织学生根据45句乘法口诀写出45道除法算式。

(3)让学生以小组为单位按一定的规律合作整理除法算式,或者按除数相同的规律进行整理,培养学生井井有条的思维习惯,按规律办事的思想方法。

【设计意图】:利用乘法口诀的排列方式以小组为单位按一定的规律合作整理除法算式,培养学生井井有条的思维习惯,按规律办事的思想方法。

三、知识应用,体验成功。

1、学生做第64页的第1题。

(1)先算出每道算式的结果,写在对应动物的'下面,然后再将所得7个结果按从小到大的顺序排列。

(2)要求学生熟练应用乘法口诀求商,同时学会有序地思考问题的方法。

2、游戏形式做第64页第2题。

(1)先让学生看清加、减、乘、除的运算符号。

(2)使学生初步形成百以内四则运算的口算技能。

3、学生独立完成第65页第4、6题。

4、做第65页中第5题。

(1)先让学生看懂图意。

(2)再让同桌两人为一组进行对口令活动。

(3)使学生进一步理解乘除法之间的关系,理解“倍”的意义。

【设计意图】:用多种形式进行练习,提高学生的学习兴趣,巩固学生对表内除法计算的理解与熟练。

四、回顾全课,总结提高。

这节课你有什么收获?

五、随堂练习。

教学反思:

最新鸽巢问题单元教学设计大全(18篇)篇十三

一、教学内容:。

教科书第68页例1。

二、教学目标:

(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点。

教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程。

(一)候课阅读分享:

同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课。

好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

(三)民主导学。

1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?

对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

方法二:用“假设法”证明。

对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。

方法三:列式计算。

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律。

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

5、简单了解鸽巢问题的由来。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结。

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

(五)全课总结。

今天你有什么收获呢?

(六)布置作业。

作业:两导两练第70页、71页实践应用1、4题。

最新鸽巢问题单元教学设计大全(18篇)篇十四

教科书第68页例1。

(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

多媒体课件。

(一)候课阅读分享:

同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课。

好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

(三)民主导学。

1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?

对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

方法二:用“假设法”证明。

对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。

方法三:列式计算。

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律。

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结。

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

(五)全课总结今天你有什么收获呢?

(六)布置作业。

作业:两导两练第70页、71页实践应用1、4题。

最新鸽巢问题单元教学设计大全(18篇)篇十五

教学目标:

1.学生经历解决问题的过程,学会用除法两步计算解决问题。

2.学生通过解决具体问题,获得一些用除法计算解决问题的活动经验,感受数学在日常生活中的'作用。

3.在解决问题的过程中,放手让学生自主探究,培养学生学习的自主性,感受解决问题方法的多样性。

教学过程:

一、复习旧知,引入新课。

1.复习旧知,解决问题。

(1)有24瓶牛奶饮料,如果每箱可以装4瓶,可以装几箱?

学生独立练习,汇报解决过程,师生简单评价。

2.教师谈话,引入新课。

我们这节课继续学习dd解决问题。

设计意图:复习除法一步计算和乘法两步计算的解决问题,为学生学习新课做好知识铺垫和心理准备。引入新课,指明学习任务,简明扼要。

二、创设情境,探究新知。

(一)自主探究、学习新知。

1.创设情境,学生搜集信息。

多媒体播放学生团体操表演的画面,指出:团体操表演是运动会上的又一项内容,并显示出“这场团体操有60人表演”的信息。

2.学生说出所观察、搜集到的信息,提出一个两步计算的问题:每个小圈有多少人?

3.学生自主探究解决方法,然后同桌交流,允许有困难的学生先交流再解答。

4.个别汇报解决方法和结果,鼓励学生提出不同的解决问题的方法。

5.全体学生针对不同的解决方法,进行评价,表扬有不同解决问题方法的学生。

(二)学生自主解决教科书第99页的做一做。

1.学生独立看图获取信息,独立解决,鼓励解决方法的多样性。

2.学生互相交流自己的解决过程和方法。

3.汇报解决问题的过程和方法。

4.组织学生进行评价。

设计意图:充分调动学生的学习经验和生活经验,让学生自主收集、理解数学信息,采用独立尝试、讨论等方式,让学生主动探索解决问题的方法,体现学生学习的自主性;鼓励学生寻找解决问题的多种方法,对于学生合乎情理的阐述,给予积极鼓励,激发学生探索的欲望,增强信心,提高解决问题的能力。

三、实践应用、巩固提高。

1.解决练习二十三的第10题。

学生独立练习,鼓励解决方法的多样性,学生汇报解决方法,学生可能出现的解决方法:

19600÷4÷2=1200(千克);。

29600÷2÷4=1200(千克)。

让学生充分说明算理,其他学生补充、评价。

2.解决练习二十三的第14题。

让学生看图获取信息,明确问题,独立解决。

学生汇报解决问题的方法和过程。可能出现:

1954÷2÷3=159(张);。

2954÷3÷2=159(千克);。

33×2=6(场)954÷6=159(千克)。

组织学生讨论,使学生明确:有些问题既可以用除法两步计算解决,也可以用乘法两步计算解决。

3.编题、解题。

教师先给出学生三个数:240、6和2,然后让学生联系生活中的一些事情,用这三个数编出一道用除法两步计算解决的问题,然后独立解决,互相检查。

4.分组解决练习二十三的第15、16题。

设计意图:分层练习,让学生及时巩固新知识,在练习过程中,进一步培养学生搜集信息、整理信息的能力,积累用除法两步计算解决实际问题的经验。在解决问题的过程中,通过交流,发现有些问题可以用多种不同的解决方法进行解决,感受到解决问题方法的多样性,同时让学生感受到生活中存在很多的数学问题,培养学生用数学眼光观察周围事物的习惯和应用意识,提高学生解决问题的能力。

四、总结全课,自我评价。

让学生说一说通过本节课的学习有什么收获,评价自己在本节课的表现。

设计意图:让学生在日常的学习过程中,学会反思、学会评价,使学生养成良好的学习习惯,形成学习方法。

最新鸽巢问题单元教学设计大全(18篇)篇十六

审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念。

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析。

《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。

学情分析。

可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。

教学目标。

1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点。

经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

教学难点。

理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:相关课件相关学具(若干笔和筒)。

教学过程。

一、游戏激趣,初步体验。

游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

二、操作探究,发现规律。

1、具体操作,感知规律。

教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

(1)学生汇报结果。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(2)师生交流摆放的结果。

(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。

设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。

质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

2、假设法,用“平均分”来演绎“鸽巢问题”。

1、思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

学生思考——同桌交流——汇报。

2、汇报想法。

预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的.1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

3、学生操作演示分法,明确这种分法其实就是“平均分”。

三、探究归纳,形成规律。

1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。

根据学生回答板书:5÷2=2……1。

(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。

根据学生回答,师边板书:至少数=商+余数?

至少数=商+1。

2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。

……。

7÷5=1……2。

8÷5=1……3。

9÷5=1……4。

观察板书,同学们有什么发现吗?

得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

板书:至少数=商+1。

设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。

师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

四、运用规律解决生活中的问题。

课件出示习题.:

1.三个小朋友同行,其中必有几个小朋友性别相同。

2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

3.从电影院中任意找来13个观众,至少有两个人属相相同。

……。

设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。

五、课堂总结。

这节课我们学习了什么有趣的规律?请学生畅谈,师总结。

最新鸽巢问题单元教学设计大全(18篇)篇十七

1、借助直观学具演示,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解鸽巢问题。

2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢问题的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。

3、在活动中引导学生感受数学的魅力。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。

最新鸽巢问题单元教学设计大全(18篇)篇十八

本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。反思如下:

1.从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

2.引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。

在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。

本节课首先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理比较简单,但是在实际的题目当中,最主要的.是帮助学生在不同的题目中找出该道题目的“鸽巢”是什么,然后要放到“鸽巢”里的东西是什么,只有帮助学生在解题时有了构建鸽巢问题模型的能力,才能使学生真正的理解鸽巢问题,以便更好地解决鸽巢问题。

鸽巢问题的出题方式都比较有趣,可以涉及生活的许多不同的方面。在解决这些问题时可以让学生都动手,构解题的模型,用实物去解决问题,教师要提高学生的这种能力,才能让学生真正地学会学习,产生学习数学动力,掌握学习数学的方法。

猜你喜欢 网友关注 本周热点 精品推荐
为了有效管理合同协议,双方应当及时履行合同义务,并在需要时进行协议的变更或终止。小编整理了一些常见的合同协议模板,供大家参考,方便起草合同。为了使我们新进的教师
每个月的工作总结都是对自己工作经验的积累,也是对职业生涯的一个总结。在下面的总结范文中,我们可以发现一些写作技巧和表达方法。我自今年5月份调入岘塬镇以来,就安排
工作计划书还可以帮助我们评估工作的进展情况,及时进行调整和改进。更好地掌控自己的工作安排和节奏,不仅可以提高工作效率,还可以增加工作的成就感和满足感。
优秀作文的写作风格要恰如其分,既要有个人特色,又要符合规范。以下是一些来自优秀作文集的片段,希望大家能从中受到启发和指导。1.把葡萄洗干净,沥干水份。2.放到容
优秀作文是经过反复推敲和修改的产物,它能够体现出作者的精益求精和追求完美的态度。阅读优秀作文可以开拓自己的视野,吸收别人的优点,让自己的作文更具有创新性和独特性
各位贵宾、亲爱的同学们,大家好!今天,我有幸能够担任主持人,与大家共同见证这一重要时刻。以下是一些成功主持人的故事和经验分享,希望能够给大家带来一些启示。
优秀作文是一座价值的灯塔,指引着读者在思维的海洋中找到方向和力量。范文有助于我们了解写作的规范和技巧,通过阅读范文,可以提升自己的写作水平和文学素养。
优秀作文要注重细节描写和感情表达,给人以鲜明的形象和感受。这里收集了一些备受赞誉的优秀作文,它们无疑是写作的典范和值得学习的范例。1、当你停止尝试时,就是失败的
教案的编写是一个反复修改的过程,教师需要根据实际情况进行反思和调整,以达到最佳的教学效果。以下是小编为大家精心整理的一年级教案范文,供大家参考借鉴。
介绍信的撰写需要注意语言简洁、准确,内容真实,以及表达对被介绍对象的认可和支持。这些范文展示了不同类型和场合的介绍信,欢迎大家一起学习和分享。临汾市人力资源社会
优秀作文是一种能够启迪思想和传递价值观念的文学作品,它能够塑造良好的道德品质。通过阅读下面的优秀作文范文,我们可以更好地理解作文的写作技巧和表达方式。
致辞通常是围绕特定的主题,如庆典、会议、纪念活动等进行演讲。小编为大家整理了一些精选致辞范文,供大家参考和学习。尊敬的各位老师、亲爱的同学们:大家晚上好!伴随着
一篇好的讲话稿应该具备逻辑性、感染力和说服力,能够引起听众的兴趣和共鸣。以下是一些备受赞誉的讲话稿范文,它们不仅在语言上精妙绝伦,也在内容上引人深思。
通过撰写安全演讲稿,可以加深大家对安全问题的认识,提高个人和集体的安全防范能力。下面是一些备受好评的安全演讲稿,它们不仅言之有物,还能够在听众中引发积极的反响和
优秀作文始终能够通过对选题的深入思考和全面展示来吸引读者的眼球,让人印象深刻。优秀作文总是运用恰当的修辞手法和生动的语言表达,使文章通顺流畅、形象鲜明。优秀作文
生日是一个让我们感到自己存在的重要时刻,我们可以庆祝我们的存在和生命。以下是小编为大家准备的生日总结样本,希望能对大家有所帮助。当雨季来临时,许多生命的记忆都被
作文是一种思维的输出和创作的过程,它能够让我们更好地理解自己以及周围的世界。通过读取一些优秀作文的范例,可以拓宽自己的写作思路和表达方式。“……扎俩个冲天鬏,光
每个人都有无尽的潜能,只要我们勇于发挥和挖掘,就能创造奇迹。我们整理了一些励志电影的片段和剧情,这些电影通过真实的故事和情感的表达,唤起了人们内心深处的渴望和梦
演讲稿是演讲者在演讲过程中的辅助工具,帮助演讲者更好地组织思路和表达观点。通过阅读这些演讲稿范文,我们可以学习到一些写作技巧和演讲技巧,提高自己的表达能力。
优秀作文是经过反复推敲和修改的产物,它能够体现出作者的精益求精和追求完美的态度。在这里,我们为大家推荐了一些写得非常好的优秀作文范文,希望能够给大家一些写作的指
写一份半年总结可以让我们更清晰地认识自己,找到进步的方向。小编为大家准备了一些半年总结的案例,希望能给大家在写作时提供一些启发和帮助。眼间我们第一批大学生村干部
青春是我们奋斗的动力源泉,让我们积极投入到追求目标的征程中。青春是人生中最热血的时期,充满了追逐梦想的勇气。青春是我们发展兴趣爱好和培养才能的关键时刻。以下是一
编写个人简历是为了向招聘单位展示自己的能力和优势,从而增加被录用的机会。以下是一些经验丰富的专家们对于个人简历写作的建议和技巧,供大家参考。婚姻状况:未婚民族:
优秀作文应该富有感染力和创造力,能够引起读者的共鸣和思考。一起来阅读以下的优秀作文范文,我们可以从中学到一些好的写作技巧和手法。一天,爷爷找我有点儿事,我想:爷
讲话稿是在一定场合下发表的具有一定内容和目的的口头陈述,它可以传达思想、表达情感、引发共鸣。讲话稿是演讲者为了更好地传递自己的观点和态度而精心准备的一种文字材料
优秀作文要求语言流畅、结构严谨、层次分明,让读者读后有所收获。这些范文通过精心的构思和良好的表达,展示了作者的才华和创造力。他,一身军装、一脸微笑,一条红领巾随
教学计划是教师教学的基本依据,它对于教师的教学思路和教学方法的选择有着重要的指导作用。下面是一些经过实践验证的教学计划样例,它们可以帮助我们更好地规划教学过程和
优秀作文能够体现学生的独特思维和个人观点,给读者以启迪和思考。欣赏一些优秀作文的范例,可以帮助我们更好地了解和掌握写作的要领和技巧。年三十,我们还行进在路上!终
学生在课堂上举手发问,积极与老师进行交流,对知识有强烈的好奇心。以下是我们为大家准备的一些优秀学生评语,希望能够为大家提供一些启示和参考。作文。批语是作文批改过
写月工作总结可以帮助我们更清晰地了解自己的工作重点和难点,从而提高工作的效率和质量。接下来是小编整理的一些实用的月工作总结范文,希望能给大家提供一些写作上的参考
优秀作文是通过深入挖掘和思考,使文章具有思想性、艺术性和生活性的结合体。小编为大家精选了一些优秀的作文范文,希望能够给大家提供一些写作的灵感和方向。
我们每个人都需要一个精炼而有亮点的个人简历,来展示自己在职业或学术领域的成就。以下是小编为大家收集的个人简历范文,供大家参考和借鉴。我主修体育保健良复专业,但对
通过做月工作总结,我们可以更好地调整工作方向,提升自己的工作能力。如果你对写月工作总结还存在疑问,那么以下的范文可以为你提供一些建议和方法。今年是我在长淮卫镇淮
优秀作文在结构上合理巧妙,能够引导读者按部就班地阅读,领略作文的美妙之处。如果你对写一篇优秀作文感到迷茫,不妨读一读以下小编为大家准备的范文,或许能够对你有所帮
部门的设立是为了各个工作领域内的细分和专业化,提高工作效率和专业水平。在这里为大家提供了一些优秀的部门总结范文,希望对大家的工作有所帮助。20xx年检验科将在院
演讲稿的目的是为了有效地传达信息,引起观众的共鸣和注意力。在下面,小编为大家整理了一些精心挑选的演讲稿范文,希望能够对您有所帮助。人好事演讲稿好人好事许许多多,
心得体会是对所做过的事情的回顾和总结,可以帮助我们更好地发现自身的优势和不足。小编为大家整理了一些优秀的心得体会范文,希望通过这些范文的分享,能够给大家的写作带
述职报告是对过去一段时间内工作成果和经验的总结,也是对未来工作发展的规划和展望。通过阅读这些范文,我们可以发现写述职报告不仅仅是一种工作任务,更是一种展现自己价
诚信是一种核心价值观和基本道德准则,是指一个人在言行之间做到守信、守诺、讲信用,具备诚实、正直、正派的品质。下面是一些诚信教育的案例分析,希望能够引起大家的反思
梦想是一颗流星,闪耀着希望和勇气,我们要紧紧抓住它,让它照亮我们的前进之路。以下是一些与梦想相关的名言警句,希望能给你带来思考和启示。今天妈妈问我,我的梦想是什
六年级教案的编写需要教师具备良好的教学设计和组织能力。预祝大家能够在教学中取得优异的成绩,以下是小编为大家搜集的六年级教案范文,供大家参考。教学目标:1.使学生
遵守规章制度能够培养自觉守法、遵纪守法的良好习惯和道德品质。严格执行规章制度可以增强组织的凝聚力和战斗力,提升整体的竞争力。1、仓库执行24小时值班制度,安全保
安全工作总结是重要的管理工具,可以帮助企业或组织建立健全的安全管理体系。为了帮助大家写出更好的安全工作总结,我整理了一些范文供大家参考和学习。在生产中,紧密围绕
优秀作文是作者用文字创造的艺术品,能够打动人心、留下深刻印象。以下是小编为大家收集的优秀作文范文,希望能够给大家一些灵感和启发。我们观察到蚂蚁,对吗?我们从他们
心得体会不仅是对过去的回顾,更是对未来的规划和思考,它可以帮助我们更好地发现问题和改进自我。以下是来自一些名人的心得体会,他们通过自己的亲身经历总结出的宝贵经验
优秀的作文不仅仅在词句的运用上达到了炉火纯青的境地,更重要的是思想的深度和触动人心的力量。小编为大家汇总了一些优秀作文的范例,希望能够对大家的写作提供一些参考和
家长会是家庭与学校之间沟通的桥梁,有助于建立良好的家校合作关系。这是小编整理的家长会常见问题及解决方法,希望能够帮助到大家更好地组织和参与家长会。的到来表示热烈
实习心得体会是对于实习单位和上级领导提供反馈和建议的一种方式。接下来,我们将共同来阅读一些实习心得体会的范文,探索实习的重要意义和收获。通过面试有幸进入中国农业
作文是一种综合性的语言活动,需要我们运用各种技巧进行创作。以下是小编整理的一些优秀作文范文,希望对大家有所帮助。牌坊广场里有一个荷花池,每到夏天,只要我一去到牌
优秀作文的写作过程需要积累素材、构建结构、展开论述等多个环节。以下是小编为大家整理的一些优秀作文,希望对大家的写作有所启发。春节已经过去,心里头的感觉像门楣上的
亲爱的老师、同学们:人人都说,书是人类一辈子的.伴侣和朋友。古今中外,爱读书的人太多太多。我也不例外。当我轻轻从床头柜上拿起一本书,翻开来看时,我就喜欢上了这本
申请书是我们向对方阐述自己优势、展示对方需要的能力和经验的桥梁。通过对这些申请书范文的研究,我们可以学习到一些优秀的表达方式和思维方式。尊敬的院领导:你们好!
优秀作文是一种创造力的展示,它能够给人以启示和思考的空间。现在让我们一起来品味几篇优秀作文吧,感受其中的优秀之处。当我看到作文题目时,我一下就想到了《超能陆战队
演讲稿的开头需要引起听众的兴趣和注意,为后续内容打好基础。在创作演讲稿时,参考一些优秀的演讲范文可以帮助你拓展思路,提升创作的质量。以下是一些精选的演讲稿示例,
优秀作文通常能够合理运用丰富的词汇和有效的句式,让文章更具魅力和表现力。以下是小编为大家整理的一些优秀作文范文,供大家欣赏和学习。窗前蝴蝶,桥边流水,青青嫩草,
作为一篇优秀作文,关键在于能够明确自己的写作目的,有条理地组织自己的思路和观点。优秀的作文注重感情表达,通过独特的写作手法引起读者的共鸣和兴趣。下面是一些写作高
写心得体会的同时,要注重对问题的总结和分析,找出改进自己的方法和途径。下面是一些值得一读的心得体会范文,希望能给大家一些启发和帮助。第一段:引言(150字)。飞
在发言过程中,发言稿可以作为参考和提醒,从而避免遗漏重要的内容。看过优秀的发言稿范文之后,相信你会有更多的灵感和思路,写作发言稿也会变得更加得心应手。
优秀作文是一面镜子,反映出作者的思想和情感,也能够触动读者的心灵。借助一些优秀作文的范文,我们可以更好地学习和掌握写作的技巧和方法,让我们一起来看看吧。
读后感是在阅读的过程中与作者进行心灵的对话和思维的碰撞。在以下的范文中,可以看到对经典文学作品的读后感,展现了读者对文学的热爱和思考。《背影》是朱自清的一篇经典
写一篇优秀的作文,不仅需要有合理的结构和有条理的内容,还需要有独特的观点和精彩的词语。以下是小编为大家推荐的一些优秀作文范文,每篇作品都有其独特的优点和特色,希
主持词是在庆典等重要场合,用来引导观众、开启活动气氛、介绍来宾和目的的一段开场致辞。这是一些经典的主持人事例,希望能够激发大家的灵感和创新思维。内容摘要:地点:
培训心得体会是对培训过程中所遇到问题和困惑的总结和解决方案。在下面,我们将分享一些成功学员的培训心得体会,希望能激发大家在学习中的热情和动力。作为幼儿教育中的重
服务月是提高认识、增加互动和交流的好机会,有助于不同社会群体间的沟通和理解。接下来是小编为大家推荐的服务月培训课程和讲座资料,希望能帮助大家进一步提升服务能力。
优秀作文是指在语言、内容和结构等方面都具有出色表现的文章。以下是小编为大家准备的一些优秀作文范文,仅供参考,请大家自行斟酌。无论在学习、工作或是生活中,大家都经
月工作总结是我对过去一个月工作的“盘点”,可以帮助我发现问题、总结经验,进一步提高工作质量。接下来,小编为大家准备了一些实用的月工作总结范文,希望能够帮助大家写
中班教案还需要注重评估和反馈,及时发现孩子们的问题和进步,以便进行调整和改进。以下是一些中班教案的实例,供大家参考和借鉴,希望能对教师们的教学有所帮助。
合同协议的内容应当明确、具体并符合法律法规的要求,避免模棱两可的表述。如果你需要起草合同协议,可以参考以下范文,了解合同协议的结构和内容。乙方:________
写读后感时,可以借鉴前人的见解和观点,但要注意结合自己的感受和理解进行独立思考。在这里,我们整理了一些精彩的读后感范文,希望能够为大家提供一些关于读书的思考和交
优秀作文通过生动的描写和精准的词语,使读者仿佛身临其境。以下是小编为大家收集的优秀作文范文,希望能够给大家提供一些启示和参考,一起来看看吧。本该是一个崭新的一年
在工作中,适时进行述职报告可以帮助我们及时反思和改进自己的工作表现。下面是一些成功的述职报告案例,供大家参考学习和借鉴。一年来,本人严格按照《幼儿园教育指导纲要
优秀的作文应该注重语境,注重情感表达和思想内涵的完整性。这些优秀作文范文从不同角度表达了作者的见解和思考,颇具开拓思路的效果。学会忽略,是通向内在平静的一条大路
幼儿园工作总结是对自己在幼儿园工作中所面临的困难和挑战进行总结和反思。小编为大家整理了一些幼儿园工作总结的经典范文,希望能够给大家提供一些写作思路和技巧。
护理是一项关乎生命的工作,护士需要具备应急处理和救护技能。以下是一些优秀护士的护理总结,希望能给大家带来一些启发和借鉴。根据卫生部关于“示范工程”的总体部署,在
讲话稿的撰写要注意语言简练、逻辑严密、条理清晰,能够准确表达演讲者的意图。如果你正在为一场重要演讲的讲话稿苦恼,可以参考以下小编为大家收集的范文。各位老师,同学
在月工作总结中,我们可以回顾过去一个月的工作成果和不足之处。在过去的一个月里,我侧重于团队管理和项目协调工作。通过有效的沟通和协调,我成功地带领团队完成了项目目
供货需要双方进行有效的沟通和信息共享,以便更好地满足需求和达成合作。下面是小编为大家精选的供货样文,让我们一起来学习和分享。根据《中华人民共和国食品卫生法》等有
调研报告通常包括摘要、引言、研究方法、结果分析、结论和建议等部分,每一部分都应清晰明了。想要写出一份优秀的调研报告,不可或缺的是参考一些经典的范文,以下是一些分
年度总结是一种分析过去、展望未来的过程,可以帮助我们更好地规划和调整自己的发展方向。下面是小编为大家整理的一些年度总结范文,希望能给大家提供一些启发和参考。其中
优秀作文是作者心灵深处情感的真实写照,能够给人以启迪和思考。以下是一些优秀作文的实例,读完后相信会对你的写作有所帮助。古人曾有云:成功是孙子,行动是老子,是的,
致辞需要针对特定的场合和受众,选择恰当的话题和内容。随着技术的发展,我们可以通过网络找到许多优秀的致辞示范,以下是其中的一些案例。各位亲朋好友:大家好!在这样一
范文可以起到指导和激励作用,帮助读者提高写作能力和水平。以下是大量范文范本的汇总,希望对大家的写作能够起到指导作用。我最的特点是:诚实守信,热心待人,勇于挑战自
买卖是一种交换行为,通过货物或服务的交换,满足人们的需求和欲望。下面是一些买卖行业的发展趋势和市场分析,供大家参考和思考。买受人:县(区)供销合作社签订时间:_
入党申请书是加入党组织的重要步骤,也是党员选拔和教育培养的重要依据。入党申请书是每个有意加入中国共产党的人必须填写的重要文件,它可以促使我们思考。在入党申请书中
心得体会是我们在学习和工作过程中的得失和感悟,它能够帮助我们不断成长和进步。这里收集了一些优秀的心得体会范文,希望能给大家带来一些灵感和启发。在商业活动中面对的
优秀作文的语言应该优美、准确,能够给读者带来愉悦的阅读体验。以下是一些经典的优秀作文片段,让我们一起欣赏、品味其中的文学之美。今天,我们学了一篇课文,就做蝙蝠和
活动方案的制定可以帮助我们更好地规划和安排时间,提高工作效率。小编整理了一些成功的活动方案范文,它们涵盖了不同场景下的活动,包括庆典、义工活动、讲座等,供大家参
优秀作文不仅仅是堆砌华丽辞藻,更应该注重思想内涵和情感表达。当我们欣赏一篇优秀作文时,也要思考它的成功之处,以提高自己的写作水平。我家种了好多的水果呢:枣子、无
学校是教师和学生共同成长的舞台,每个人都能在这里发挥自己的才能。这些学校总结范文的语言生动、句式多样,给读者带来了阅读的乐趣和启发。同学们:为保证学生安全,顺利
活动方案的制定过程中,我们需要与相关人员进行充分的沟通和协商。如果你正在策划一场活动,不妨看看以下精选的活动方案,或许能给你带来一些灵感和启示。20xx年9月1
演讲稿是一种在特定场合下用于演讲的书面稿件,用于向听众传达思想和观点。每一篇演讲稿范文都有其独到之处,通过学习它们的优点和亮点,我们可以提升自己的演讲表达能力。
中班教案要紧密结合幼儿的实际情况,提供适宜的学习环境和活动内容。通过阅读以下中班教案范文,我们可以更好地把握教学要点,提高教学效果。1.背诵儿歌《两只山羊》。2
买卖不仅仅是交换物质,更是一种交流和沟通的方式,通过买卖,人们可以建立彼此的联系和信任关系。以下是小编为大家整理的买卖经验总结,希望能够对大家的买卖活动有所帮助
家长会是学校与家长沟通交流的重要平台,旨在促进学生的全面发展和家校合作。作为家长,我们需要参与家长会,了解孩子在学校的学习情况和成长进展。以下是一些成功的家长会
实习总结是在实习期间对所学知识与实践经验进行总结和概括的一种书面材料。请大家看看下面这些实习总结范文,或许能够为你的写作提供一些启示。我与同学到xxxx物业管理
党员思想汇报是党员向组织汇报自己学习党风廉政建设的过程和收获的一种方式。党员思想汇报虽然是一种个人的表达,但通过阅读一些优秀的范文,我们可以进一步提高自己的写作
优秀作文是一种精心构思、扣人心弦的文学作品,它能够打动读者的内心。小编为大家整理了一些优秀作文的案例,希望对大家在写作时有所启发和帮助。开学前几天,学校为增强学
教学工作计划是指教师在一段时间内对教学任务和活动进行规划和安排的书面材料,它是教学工作的重要组成部分。以下是小编为大家整理的一些教学工作计划的模板和指南,希望可
中班教案是教师组织教学工作的重要依据,有助于提高教学效果。小编给大家推荐了一些中班教案的范文,希望能够给教师提供一些建议和启示。1、幼儿能以自己为中心认识左右的
作文是一种思维的输出和创作的过程,它能够让我们更好地理解自己以及周围的世界。以下是小编为大家收集的优秀作文范文,希望能给大家提供一些启发和参考。春天来了,天气变