教学计划还需要与教材内容和课程标准相结合,确保教学活动的科学性和系统性。最后,我们为大家准备了一些针对不同教学阶段和领域的教学计划模板,供大家下载使用。
笔算两位数乘两位数教学设计(优秀17篇)篇一
除数是一位数的除法是本册教材重点也是难点教学内容之一,这部分内容是学生学习除数是两位数、除数是多位数除法的重要基础。本节课是笔算这一内容的起始课,是在学生已经掌握了用乘法口诀求商的方法、学会了除法算式的写法及学习了口算除法的基础上进行教学的。本节课的教学重点是探索一位数除两位数的笔算方法,掌握竖式的书写方法和格式;难点是理解一位数除两位数的笔算除法的算理。
我从学生的生活经验和已有知识出发,精心创设情境,引导学生开展尝试、操作、交流、实践。基于学生是数学学习的主人这一教学观念,我从学生的认知发展水平和已有的知识经验出发,组织探究笔算方法的活动。
先以解决三年级平均每班种多少棵?为例,请学生运用已有的知识、技能,探索422怎样算。在学生独立探索后,交流自己的方法。有的学生通过分小棒,知道结果;有的学生口算出422=21;还有的学生在运用口算方法的同时,写出竖式表示计算结果。交流活动展示了学生探索的成果,也显示出学生对笔算方法的不了解。因此,我提出:今天我们重点研究笔算除法明确学习内容。通过课件再现分小棒的过程,并以师生对话教师板书的方式,共同经历笔算的过程,帮助学生了解笔算除法的顺序、求商的方法和商的书写位置。
接着,请学生解决四年级平均每班种多少棵?的问题,进一步探索笔算除法。在这里,先让学生用竖式计算522,并告诉学生:可以先用小棒分一分,再写竖式。我们看到,有的学生动手分小棒,有的学生直接写竖式,每个学生都在认真探索。1分钟过去了,我请写完的同学和同桌说一说,是怎样算的;2分钟过去了,请学生向全班展示,师生分享着成功的喜悦。展示后,课件动态显示分小棒和笔算522的过程,并在黑板上再现除法竖式,理顺思路,提升了学生对除法笔算过程和算理的理解。然后,老师特意请学生回忆比较422与522的笔算过程有什么不同?通过比较,突出522的第二个计算过程,即被除数十位上余下的数与个位上整节课,从植树节、植树活动开始,到布置学校的设计活动,围绕着学生的学习展开了一系列活动。学生经历了探索,运用除法笔算方法的全过程,主动构建知识。学生学的快乐、主动,达到了预期的教学目的。的数合并,再继续除,使学生进一步认识除法的笔算方法。
笔算两位数乘两位数教学设计(优秀17篇)篇二
1、根据三位数乘一位数、两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法,能正确进行计算。
2、通过旧知到新知的迁移,感受数学知识和方法的内在联系,培养迁移类推能力和解决简单实际问题的能力。
3、在主动参与学习活动的过程中,进一步体验学习成功的快乐,激发探索计算方法。
一、复习引入。
笔算:回忆一二年级的加法和乘法,看视频,如果王爸爸把鱼卖到每斤12元,28斤鱼的,能卖到500元吗?[设计意图:本节新知是建立在学生已有的多位数乘一位数的笔算和两位数乘两位数的笔算方法等旧知的基础之上,唤起学生的旧知可有效迁移到新知的探究中。在课一开始就创设了学生非常熟悉并且喜欢的“爸爸去哪儿”的卖鱼片段,立刻就吸引了孩子们的眼球,他们学习兴趣特别高,老师趁机出示问题,紧紧抓住学生的注意力。
二、探究新知。
如果每人有499元,他们剧组有23人,一共会有多少钱呢?引出三位数乘两位数。
(2)学生进行估算,并说出自己的想法。
(3)笔算。
学生尝试,师巡视挑选有代表性的做法之后全班交流。
[教后反思:正如事先预设的一样,学生模仿之前的笔算方法较轻松地完成了。提问:
1、497是几个人的钱,20个499元是多少钱,最后23个人的钱是多少,学生都很容易答出来了,只是朱逢行别出心裁用了这样一种方法:
他解释道:每人500元,23人有500乘23元,最后再减去一个23元,就是所有人的钱。
学生的思维有时很独特,不得不令人佩服。]。
两大组以比赛的形式进行,师挑选典型做法全班交流。
三、课堂总结。
师:通过讨论归纳,利用两位数乘两位数的算理,学生推出三位数乘两位数的计算方法。
四、延伸练习。
笔算两位数乘两位数教学设计(优秀17篇)篇三
“两位数减两位数退位减法”是二年级上册教学内容。这部分教学内容是在学生学习了“两位数减两位数不退位减“的基础上进行学习的,学生有了一定的计算基础,并且会用竖式计算,所以在教学中,我放手让学生自己通过数学例题中的数学信息提出了不同的问题,并列式计算。
《数学课程标准》指出,数学教学必须建立在学生的'认知发展水平和已有的知识经验基础之上,有了一定的学习基础,此类题大多学生都会算。所以我们要把主动权交给学生,让他们借助已有的知识经验自己去探究,去发现解决问题的方法。作为教师不要去为学生设计“过渡题”“样板题”,这样容易把学生带入教师预设的方法中。应该放手让学生自己去比较,分析,选择适合自己的计算方法,或心服口服的认同书本上相对较好的方法。
此节课,我也深深的感到,作为一名教师要有耐心,要把机会让给每一个学生,让每一个孩子在启发中互相创新,在启发中激起探究的热情。因为这种动态生成的效果正是我们所追求的。虽然对一时的“创造发明成果”还没有马上转化,但在这过程中学生思维的发展,共同促进学习氛围的形成。对学生今后的发展,都会有意想不到的收获吧。
本节课让学生了解每一种计算方法,目的是从小就培养学生“多种选优,择优而用”的科学研究态度。同时当学生自己创造的算法被肯定时,他们幼小的心灵所萌发出的自我价值、学习信心、主动挑战意识等不也是课堂教学的成功所在吗?我认为这些才是提倡算法多样化乃至教学改革的真谛。
笔算两位数乘两位数教学设计(优秀17篇)篇四
教师质疑:你是怎么想到商“5”的?(我觉得把“26”看作“30”试商,30要比26大,因为我知道30×5=150,所以我想26×5一定小于150,所以我就商“5”试了一下,居然刚好)。
生:还有用到刚才估算的方法也能很快找到商“5”
教师点评:嗯,这三种都是不错的试商方法。
4、拓展问题。
笔算两位数乘两位数教学设计(优秀17篇)篇五
教学内容:人教版四年级数学上册第四单元第一课时。
教材分析:《三位数乘两位数笔算乘法》这节课是在学生掌握两位数乘两位数的笔算基础上进行教学的,教学中两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数笔算中来。学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习小数乘法打好基础。
学情分析:学生在三年级时已经学习过三位数乘一位数、两位数乘两位数的乘法笔算。而三位数乘两位数的笔算和两位数乘两位数的笔算相比,在算理和算法上是完全一致的。因此,学生对算理和算法的理解和探索并不会感到困难。但是,由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况。
教学目标。
知识与技能:
2、培养学生类推迁移的能力和口算的能力。
过程与方法:
使学生经历笔算乘法计算的全过程,掌握算理和计算的方法。
情感、态度和价值观:
培养学生认真计算的良好学习习惯。
难点:使学生掌握三位数乘两位数的计算方法并正确计算。
教学过程。
一、复习导入;
1、口算:
23×30=47×20=。
42×19≈58×41≈。
2、笔算。
43×26=12×34=。
说一说笔算的方法是什么?
3、揭示并板书课题。
二、探究新知.。
1、默读题目,你知道了哪些数学信息?要求的问题是什么?
2、怎样解答?
4、怎样计算145×12:
(一)、估算。
师:你们可以估算出145×12的大致范围吗?小组交流讨论,你是如何估算的?
哪位同学把你的估算过程和想法跟我们分享一下呢?
生:把145看成150,150×10=1500,150×2=300,相加等于1800。所以我觉得,大约是1800千米,但比1800小。
(二)、笔算。
生:用竖式计算。
师:也就是笔算乘法(板书)。
师:那么要如何用竖式计算145×12的积呢?先在你们的练习本上试着算一算。
(学生尝试计算,师巡视,找同学板演并说出自己的计算方法)。
生2:竖式计算。
(全班学生齐做,把学生做错的几种不同情况,板书在黑板上)。
师:我们一起来看看这几位同学的竖式,有什么不一样?你们觉得那位同学是正确的?
生:……。
师:我们一起用计算器来验算一下积到底是多少?你算对了吗?
让板演正确的学生讲一讲“你是怎么算的”
师:那1与5相乘的积要写在哪位数位上呢?是个位上,还是十位上?为什么呢?
生:写在十位上,因为1在十位上,相同数位要对齐。
(此处,学生的表述可能不规范,可能说,“在这里的1表示的是10”,师要予以引导,得到这个之后,师可以再结合145×12=145×2+145×10,让学生明白145×12竖式的算理)。
师:那列竖式计算145×12时,要先算什么?再算什么?怎么算?
生:2乘以145,再算10乘145。
师:积要写在哪里?为什么?
生:10乘145的积写在十位上,因为1在十位上,数位要对齐。
师:最后写什么?
生:将两次乘积相加。
师:那其他几个同学的竖式有问题吗?有的话,问题在哪里?
生:他没有乘百位,……。
(师要强调我们现在算的是三位数乘两位数,要记得乘百位,可以和45×12进行对比。)。
师:现在请同学们观察45×12、的竖式有145×12什么不同?找出其相同点和不同点。
三、
知识运用。
1.做一做。
134。
第二部分积。
该怎样写?
×12。
2.做一做。
176。
×47425237。
3.说出下面计算中的错误,并改正过来。
134134。
×16×16。
十位上的1和4相乘,所得的积要对准十位。
4、学校要为各班新购买一套百科全书。全校共36个班,购买这些。
新书一共要花多少钱?
129元∕套。
四、仔细想想,谈谈收获,归纳小结。
师:今天,你学会了什么?
生:
(1)先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐。
(2)再用两位数十位上的数去乘三位数,得数的末位和两位数的十位对齐。
(3)然后把两次乘得的数加起来,注意满十进一。
五、作业:
(1)数学书47页“做一做”。
(2)练习八1、2题。
教后反思:
本节课是一堂计算知识的新课教学。从学生已有知识经验出发,给学生创设了思考与交流的空间。我在上课过程中更加认识到小组学习在当前教学中的作用,通过小组合作学习,让每个学生充分发表自己的见解、交流自己对知识的理解。在学习的过程中,既能认识到自己的不足,又能迅速学习同伴的长处,取长补短。同时更深刻地认识到对知识传授过程中细节的处理,有可能成为一节课成败的关键。
一、比较好的几方面:
1、备课时把握住了知识的前后联系。小学阶段对整数笔算乘法的最高要求是掌握三位数乘两位数的笔算,两位数乘一位数是笔算乘法的开始,两位数乘两位数是笔算乘法的关键。因为两位数乘两位数和三位数乘两位数同是乘数是两位数的乘法,如果熟练掌握了两位数乘两位数的笔算,再恰当的利用知识的迁移,学生肯定会很快的掌握三位数乘两位数的笔算。
2、教学中成功创设了预习问题。在学生的预习过程中,让学生有目的的进行学习,对于问题,通过学习之间的讨论,交流得出问题的答案,学生的学习效果比较明显。
3、有效的培养了学生认真书写乘法竖式的习惯。(1)教学的板书做到以身作则;(2)要求明确,包括数字间的间距、相同数位如何对齐以及横线的画法;(3)严格要求,作业批改中要求学生按要求书写。
二、不足之处。
1、教学中没有将新旧笔算进行很好的对接。特别是在复习两位数乘两位数的笔算乘法,没有利用好学生已有知识基础学习新知,过高估计了学生对两位数乘两位数笔算的掌握,没有进一步强调算理,教学中又没有强调好“用十位上的数去乘,乘得数的末尾和十位对齐”这个算理,结果导致部分学生在书写第二步乘积时,数位对错。
2、没有考虑到学生口算能力的薄弱。学生出错的另一个重要原因是口算出错,原因之一是乘法口诀背错,比如:三六十二、四八三十六等等;原因之二是100以内的进位加法出错,比如24+8、54+7等等。
三、今后改进方面。
1、教学中复习铺垫要到位,唤起学生已有的知识,关注数学知识本身的逻辑联系,充分的利用已有知识学习新知,旧知迁移效果会更好。
2、课堂上加强学生的口算练习。
(1)必要性。相比之下,笔算乘法比笔算除法更容易掌握一些,进位加法的口算比退位减法的口算更容易掌握。在学习时,先让学生口算几道题,特别是进位的加减法,因此,在学习下一个单元笔算除法时,学生遇到的困难肯定会更多。因此,必须从现在开始加强学生的口算练习。
笔算两位数乘两位数教学设计(优秀17篇)篇六
1、出示一幅订牛奶的情景图。(一份牛奶每月28元,订5个月要花多少钱?)。
指导学生从图中获知数学信息及所求问题,提问:你打算怎样列式解答呢?解决这个问题需要用到以前学习的什么知识呢?(28×5;前面学过的两位数乘一位数笔算的知识)。
教师请一位同学在黑板上写出笔算过程,同时请其他同学口算:13×20;12×40;30×21;lo×l5;28×10。师:这些都是前面刚学过的乘法口算,说说你的口算过程。(两位数乘整十数的口算……)。
引导学生一起检查黑板上写出的28×5的笔算过程。提问:通过28×5的笔算,我们可以求得订5个月牛奶要花的钱。刚才口算"28×10"可以解决这里怎样的问题呢?(订10个月牛奶要花的钱)。
出示:订一年这样的牛奶要花多少钱?根据学生回答,教师板书:28×12。再提问:与前面学过的两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式呢?(两位数乘两位数)。
教师板书课题,并明确今天的学习内容。
二、展开探索,算法多样。
1、估算28×12的积大约是多少呢?(把28看作30,12看作10,28×12的积大约是300)。
2、启发谈话:28x12的精确答案是多少呢?这是个新的问题,小朋友,开动脑筋能否用以前学过的知识得出28×12的结果呢?请试着在纸上算一算!如果独立计算有困难,可以先自学课本30页中的算法,再独立进行计算。
3、学生在小组内展开交流,说说各自的计算方法。
4、全班集体分享,教师将其写在黑板上,并让学生分别说出思路。
三、深化研究,优化算法。
1、回顾:我们还没有学习28×12的计算方法,同学们就能用这么丰富的计算方法得出结果,真了不起!老师想知道,你们是借助以前学过的哪些知识来解决的呢?(第1种方法借助两位数乘一位数、两位数乘整十数以及笔算加法的知识;第2、3两种方法借鉴了两位数乘一位数的竖式计算;4、5两种方法都是运用的两位数乘一位数的知识。)。
2、赏析:在这些算法中,你比较欣赏哪一种算法?(我喜欢第一种方法,因为它容易理解;我喜欢竖式计算,因为它比较清楚简捷;我认为四、五两种方法不仅容易理解,而且只用两步就可以算得最后的结果……)。
3、讨论:如果要计算29×13你会选择怎样的计算方法呢?(同桌讨论,全班交流)提问:为什么没有同学选择像黑板上(4)、(5)两种方法来计算呢?(4)、(5)两种方法有局限性,乘数13不能像1那样拆。
4、比较:方法(2)、(3)都是用的竖式计算,你发现它们有什么异同呢?(这两个竖式只是十位上的“1”去乘28,所得的积写法不同,其它都一样)提问:你是怎样理解这两种不同写法的呢?(方法(2)与以前学习的笔算一样,用乘法口诀”一八得八”、“一二得二”记录每步乘得的积;方法(3)乘数12十位上的“1”表示10,28×10口算得280)思考:在方法(2)中,乘数十位上的“1”乘得的积“28”与第一次乘得的积“56”相比,写的位置靠前一位了,你是怎样理解的呢?(这里的“28”表示28个十)试想:如果乘数十位不是“1”,而是数字较大的“9”时,你觉得运用哪种写法比较好呢?(口算的方法有些困难,运用乘法口诀记录每步乘积比较容易)观察方法(1)、(2)之间的联系,教师根据学生的口答进行连线。
5、小结:方法(2)是将方法(1)分步计算的过程用竖式的形式表示出来,当我们理解之后,采用方法(2)的写法不仅使计算过程清晰,而且还便于检查。所以小学阶段我们进行笔算的基本算法是竖式计算,随着学习的不断深入,它的优势将会更明显。(完善课题,添上“笔算”)同桌小朋友相互说一说怎样用竖式计算"28×12”,在计算过程中要注意些什么?(用乘数十位上的数去乘,乘得的积的末尾要和十位对齐)。
6、练习:出示课本第31页“想想做做”第一题,学生独立练习后,全班进行交流。
四、发现规律,学会检验。
1、教师在黑板上出示12×28的竖式,与刚才28×12的竖式比较异同。(都是两位数乘两位数,只是乘数的位置交换了)提问:它们的计算结果会怎样呢?学生带着猜想补充完整课本31页“试一试”的计算并观察验证。启发:运用这一规律可以对两位数乘两位数进行验算。
2、课本“想想做做”第二题。
五、熟练运用,拓展提高。
1、完成课本“想想做做”第三题,学生纠错后在全班集体交流。
2、学生独立完成课本“想想做做”第四题,教师巡视指导。
3、完成课本“想想做做”第五题。启发谈话:学以致用不仅能巩固我们学习的知识,还能提高我们运用知识解决问题的能力。看到了这样的生活情景你能提出什么问题?学生利用今天学习的知识进行解答。
4、提问:你能利用今天学习的知识,计算语文课本上你喜欢的一篇课文大概的字数吗?(数一数课文每行有多少字,大约有多少行,利用今天学习的两位数乘两位数的知识算一算就可以知道了)学生试着练习。
六、交流体会,分享收获。
启发谈话:通过这节课的学习,相信你有很多学习的体会和收获,与同学们一起分享吧!
笔算两位数乘两位数教学设计(优秀17篇)篇七
商是两位数的笔算除法是在商是一位数的基础上编排的,商是两位数的除法除的顺序、试商的方法与商一位数的完全相同,只是商的位数多了,计算复杂了些。本节课的重点是弄清每一位商的书写位置,掌握两位数除法的笔算方法。
1.将计算教学与解决实际问题相结合。把计算教学置于现实情境之中,把探讨计算方法的活动与解决实际问题融为一体,促使学生积极主动地参与学习活动,经历除法计算方法形成的过程。我结合海宁创卫实际,充分利用教材呈现的情境图设置教学情境,从中引出数学问题,把计算教学融入解决实际问题之中,并自然渗透保护环境的教育,增强学生的环保意识。
2.运用知识的迁移规律,让学生主动探索计算方法。商是两位数的除法是在学生学习了一位数除法及商是一位数的两位数除法基础上学习的,学生已经具备了笔算除法的直接经验。教学时,引导学生利用商是一位数及除数是一位数除法进行正迁移,沟通一位数除法与两位数除法笔算方法的联系,引导学生运用已有知识解决商是两位数除法中遇到的新问题。先让学生根据已有经验进行商是两位数除法的方法猜想,再放手让学生实际尝试、探讨笔算方法,提升学生对计算过程的认识,完善学生对算理的理解。最后组织学生进行小组合作学习,互相出题、做题、讨论,在观察与比较中归纳两位数除法与一位数除法的异同点,进一步明确两位数除法的计算方法。
1.让学生经历商是两位数的除法的笔算过程,引导学生主动探索计算方法,弄清每一位商的书写位置,掌握除数是两位数的除法的笔算方法。
2.引导学生比较除数是一位数的笔算除法和除数是两位数的笔算除法的异同,使学生从实质上把握两者的联系和区别,从中培养学生思维的灵活性及迁移类推概括的能力。
3.使学生能够运用所学的知识解决简单的实际问题,感受数学在生活中的作用,渗透环保教育。
难点:商的最高位的确定及商个位“0”的处理。
例(1):学校共有576名学生,每18人组成一个环保小组。可以组成多少组?
1.可以怎样列算式?
2.估计一下,大约等于多少?它的商是几位数的?
3.和我们前几节课学习的除数是两位数除法有什么不同吗?(揭题)。
(1).猜想方法。
(2)学生尝试笔算。
(3)针对学生出现的情况进行反馈讨论,明白商是两位数除法的计算方法。
重点引导:先算18除什么数?
商“3”为什么写在十位上?
例(2):十月是学校环保月,共收集了930节废电池,平均每天收集废电池多少节?
(1)可以怎样列算式?
(2)判断一下,它的商是几位数?(也是两位数)。
(3)列竖式算一算,边算边思考:计算时和刚才的一题有什么不同?
反馈交流。除到十位余下的数是0怎么办?
(4)不列竖式,判断下面各题商是几位数。分小组算一算。
136÷8584÷26319÷53845÷21。
3.比较除数是一位数除法和除数是两位数除法的异同。
(1)小组活动:各写一道除数是一位数和两位数的除法算式,请同桌做一做。
边做边思考:除数是两位数的除法与除数是一位数的除法有什么相点和不同点。
:762÷63=234÷26=。
笔算两位数乘两位数教学设计(优秀17篇)篇八
教学设想:创设情境,使学生产生学会计算方法的需要,并激发学生运用已有知识解决新问题的灵感。
教学目标:
1.经历探索两位数乘两位数计算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
2.在具体的情景中,应用有关运算解决实际问题,体会解决问题策略的多样性,进一步发展数学思考,提高解决问题的能力。
3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高合作交流的能力,获得成功的'体验。
教学难点:理解乘的顺序以及第二部分积的书写方法。
教学准备:挂图。
教学过程:。
一、创设情境,发现问题。
1.谈话导人:在生活中有很多事情需要我们用数学方法去思考解决,例如这小小的“喝”问题也不例外。
2.估算。
(1)谁能估算一下订一份牛奶一年大约需要多少元钱?(300元)。
(2)你是怎样估算的?
二、合作探究,解决问题。
1、明确问题:有什么办法来说明白己估测的是否接近正确答案,或者与正确答案相差很远?(算一算)。
怎样算呢?你们能自己动动脑解决这个问题吗?
2.尝试解决:学生独立思考,教师适时指导有困难的学生。
3.小组交流:同学们所用的方法不完全一样,请大家在小组中互相交流自己的算法。交流之前可以先整理一下自己已有的研究成果,想一想你准备讲哪几点,说哪几句话。(4)用竖式计算。
请学生说说用前三种方法算的道理。
5.比较方法:这个竖式同方法(3)比较有无联系?(实际上都是分三步计算的,竖式是把三步计算写在一个式子里。)。
6.选择方法:这么多方法中,你最喜欢用哪种方法来计算呢?为什么?自己选择一种方法算一算。
7.研究笔算方法。
指名回答,教师随机板书:
(1)第一步算的是什么?
(2)第二步算的是什么。
(3)第三步算的是什么?怎样算的?
(4)这一结果和我们开始的估测差不多吗?
8.归纳提炼。
你能用自己的话再说说计算以上这题的方法吗?教师适时引导归纳笔算乘法的方法,并板书课题。
指出:做两位数乘两位数的笔算时,其实是把它分解为两位数乘一位数、整十数来分别计算,然后把两个得数加起来。
9.完成“试一试”。
三、尝试应用,拓展深化。
1.完成“想想做做”第1题。
学生先独立计算,然后交流汇报。教师展示一些典型的错例,组织讨论,纠正错误。
2.完成“想想做做”第2题。
学生独立做题。
3.完成“想想做做”第3题。
(1)各自观察题目,找到错误原因,在班内交流。
(2)各自算出正确答案。
4.做“想想做做”第4、5题。
(1)观察题目提供的场景。提问:你从中了解到哪些信息?你能提出什么问题?(小朋友应付多少元?)。
(2)学生独立计算解决问题。
四、回顾总结,汇报收获。
l提问:通过今天的学习,你又有什么收获?
五、课堂作业。
笔算两位数乘两位数教学设计(优秀17篇)篇九
(二)培养和发展学生思维和语言表达能力.。
(三)培养学生认真计算的好习惯.。
教学重点和难点。
重点:理解笔算减法的法则,比较熟练地进行计算.。
难点:使学生理解退位减的算理,掌握计算方法.。
教学过程设计。
(一)复习准备。
1.指名板演:(用竖式)42-21=。
2.口算.。
13-917-832-5。
15-714-640-3。
3.出示42-8=□,指名说计算的过程.。
4.订正板演.。
1.相同数位对齐;
2.从个位减起.。
笔算两位数乘两位数教学设计(优秀17篇)篇十
本课的教学是在学生已经掌握了两位数减一位数退位减法和两位数减两位数不退位减法的基础上进行教学的。在本课的教学过程中,我注重以下两点:
第二,在练说之中,巩固算法。在后面的练习题中,我择题请学生说一说:你是怎么算的`?把你的计算过程说一说。因此,在本课结束时,学生基本都会表达出计算过程:个位上几减几不够减,向十位借一个十,个位上就是十几减几;十位上是几减一后再减几,差就是几十几。在这样的一个练与说相结合的过成中,学生较好地掌握了算法。
笔算两位数乘两位数教学设计(优秀17篇)篇十一
教学目标:
1、鼓励学生进行算法探索,经历算法形成的过程。理解并掌握两位数减两位数的不退位减法的笔算方法,能正确笔算。
2、学生经历丛生活中发现问题,解决问题的过程,逐步形成必要的数学素养。
教学重点:
进一步理解相同数位对齐的意义,掌握两位数减两位数的不退位减法的笔算方法,能正确笔算。
教学难点:
掌握不退位减法的'笔算方法,理解笔算中的对位问题。
教学准备:
图片、小黑板。
教学过程:
一、谈话引入,揭示课题。
星期天,老师去新华书店挑了三本书:《十万个为什么》每本48元、《安徒生童话》每本35元、《格林童话》每本23元。(黑板贴图片)。
1、仔细观察,这三道算式有什么相同的特点?(引导学生说出:都是两位数减两位数。)。
反馈时可能出现,
第二种情况:可以像加法一样笔算。
您现在正在阅读的《笔算两位数减两位数(不退位)》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《笔算两位数减两位数(不退位)》教学设计3、好,今天我们就来研究两位数减两位数的笔算。(板书课题:两位数减两位数的笔算)。
二、自主探究,理清算理。
1、笔算时,我们应注意什么?(相同数位对齐)。
2、学生尝试笔算,并指名板演。
反馈。你们对上面的竖式有意见吗?与加法竖式有什么不同?怎样计算的?
要求学生会说算理。
3、除了笔算外,我们还可以用计数器来计算。师生共同演示。
(学生独立笔算后反馈,要求会说算理。)。
三、巩固练习。
1、书本第19面,做一做第1题。
学生直接做在书上,指名板演,反馈纠正。
2、书本第20面第1题。
学生直接做在书上,指名板演,反馈纠正。
3、书本第20面第2题。
学生直接做在书上,指名板演,反馈纠正。
同样是8,为什么写的位置不同?(强化对位)。
四、课堂总结。
这节课,我们学会了什么?笔算时要注意什么?
笔算两位数乘两位数教学设计(优秀17篇)篇十二
1.学生通过经历探究建构两位数乘两位数(不进位)数学模型的过程,理解其算理,掌握其计算法则。
2.学生通过小组和全班同学的交流,感受计算两位数乘两位数的方法和解决问题的多样化,培养学生的数感和数学思维意识及交流能力。
师:同学们,上节课我们两位数乘两位数的笔算乘法(并出示复习题12×11,13×21,)。
[设计目的]回顾两位数乘两位数不进位笔算乘法的方法,及乘的顺序及书写方法)。
1、通过中国棋圣--聂卫平爷爷,引入新课。
师:同学们,你们认识刘翔吗?(短跑飞人)姚明?(篮球高手)那聂卫平爷爷你认认吗?
生:中国的围棋高手,被称为“棋圣”。
师:太棒了,那你知道围棋的盘面是怎样的吗?(课件出示围棋盘面图)[目的:电脑呈现棋盘图,使学生了解到:围棋的棋盘面由纵横各19道线交叉而成]2、教学例题。
(1)理解题意,列出算式。
师:请你估一估19乘19会等于多少?生:19≈20,20乘20大约是400师:400是一个大概数,那准备的数据应该是多少?我们就要算出准确结果来。
[设计目的:让学生主动学习,肯定来自于内部需求;如果没有这个需求,学生不会无缘无故地进行主体参与。因此,课堂伊始,我先创设下围旗这一情境吸引学生,然后从旗盘中引出需要解决的问题,使自主探究变成学生的一种需求。这样,在短时间内就将学生的注意引向内容,让他全身心地走进数学的“门槛”。]教师巡视发现:大部分对书写的顺序都掌握的较好,但对9乘9等于81,1知道放在个位,但8这个进位往往会遗漏。所以结果有好多种,如281(没有进位),361,190(第二个因数的十位和第一个因数相乘的书法位置写错)。
(3)引导解疑师:那怎么是对的呢?
生:我认为361是对的,因为跟我们估算的结果相差19。师:是的,你真聪明。
师:那我们一起来看看小精灵是怎样计算的。(出示19×19列竖式的动态课件)。
生:先用第二个因数个数上的9去乘第一个因数,从第一个因数的个位乘起,在哪一位乘的积就写在那一位上面。再第第二个因数上的1(1个十)去乘第一个因数,也是从第一个因数的个位乘起,在哪一位乘的积就要写在哪一位上面,最后把两次乘得的积加起来。
师:说得太完整了,太棒了。我想问问同学位第二个因数个位上的9乘第一个因数个位上的9等于81,1对着写在个位,那8应该处理?[处理好进到的位要加到下一位相乘的积里面]师:我想再问问同学为什么第二个因数十位上的1和第一个因数个位上的9相乘的积要写在十位呢?[解释为什么哪一位上乘的积要写在那一位上面,这里的第二个因数十位上的1表示10,乘以9就表示90,9当然就要写在十位上才能表示90](5)即训(进一步掌握两位数乘两位数进位的笔算方法)。
23×3454×1339×2717×28(6)通过练习后,总结出掌握两位数乘两位数进位的笔算方法。1、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。
2、再用第二个因数的十位去乘第一个因数,得数末位与第一个因数的十位对齐。
3、然后把两次乘得的积加起来。
(三)巩固练习。
算一算,填一填。[既可以巩固笔算方法又可灵活选择信息开拓思维]71×28=61×32=25×24=(四)全课总结。
今天,我们学习的是进位笔算乘法,你的收获是什么?
笔算两位数乘两位数教学设计(优秀17篇)篇十三
一、教学目标:
1.知识与技能目标:
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法。
启发诱导法、讲授法、探究法。
四、学习方法。
练习法、探究法、小组交流法、观察法。
五、教学过程:
(一)引入新课。
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)。
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)。
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)。
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学。
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)。
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
笔算两位数乘两位数教学设计(优秀17篇)篇十四
1、掌握进位的两位数乘以两位数的'计算方法,并能正确的进行计算。
2、在交流中,培养同学的合作意识,并能有条理的表达自己的想法。
3、主动参与新知识的学习与活动,增强对数学学习的成功与体验。
:小黑板。
一、复习铺垫。
笔算。
133945。
×12×6×5。
指名学生上讲台进行板演,找同学进行检验。
二、自学尝试小组交流。
1、学生观察信息窗2情景图。
师:节日期间,街心花坛装扮的异常美丽,请仔细观察画面,你知道了什么:
1.“保护环境”花坛每排27盆花,共23排。
2.“美化家园”花坛每排22盆花,。共28排。
3.街心喷泉每排有43个喷头,共32行。…………。
师:同学们观察的真仔细,发现了这么多的数学信息,真了不起!根据这些信息,你能发现哪些数学问题?和你组里的小伙伴交流一下。
学生根据信息,可能会提出以下问题:
“保护环境”花坛一共用了多少盆花?
“美化环境”花坛一共用了多少盆花?
喷泉里一共装了多少个喷头?…………么?
我们先来解决第一个问题。保护环境花坛一共用多少盆花?你想怎样做呢?学生自己尝试列出竖式进行解决,解决好以后,在小组内进行交流自己做题的步骤,同学之间互相进行说一说,找同学到黑板上进行板演并进行讲解,下面同学有什么疑问,进行提问,学生进行质疑,同学进行解答。有的同学用了估算的方法。
三、点拨升华。
教师再进一步指着竖式对学生提出问题,让学生进一步明确,两位数乘两位数的笔算方法:
1、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。
四、巩固练习。
1、出示小黑板让学生分组进行练习,每组中的2号同学到小黑板上进行计算,各组的组长进行判断。统计做对题的人数。
2、做书上的练习题,自主练习的第3、4、5、题。
让每组中的3号同学到黑板上进行展示。集体进行纠正。
五、课堂小结。
这节课学习了什么?在计算过程中要怎样做?
笔算两位数乘两位数教学设计(优秀17篇)篇十五
教学目标:
1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。
教学重点:
教学难点:
形成综合运用数学知识解决问题的能力。
教学准备:
小黑板。
一、情境导入。
师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:
二、目标导学。
1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
三、独立解答、小组合作解决问题。
师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)。
师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?
生一:48根灯条,每根71个灯泡。
生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯。
生三:a型车限乘25人,b型车限乘8人,a租4辆型车正好。
生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
(通过让学生说数学信息,培养学生完整、正确表达的好习惯)。
师:根据你发现的信息能提出哪些数学问题?
(学生各抒己见)。
师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。
出示四个问题:
1、一共有多少个灯泡?
2、29个同样的广告灯一天的租金多少元?
4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。
(学生独立解答,教师巡视大约10分钟)。
师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。
(学生小组交流,教师巡视,看看各小组讨论情况)。
师:各小组都讨论完了,下面请小组的同学上来汇报。
小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。
师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。
四、自主练习。
教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)。
笔算两位数乘两位数教学设计(优秀17篇)篇十六
教学内容:人教版三年级下册。
教学目标:1.掌握两位数乘以两位数的不进位乘法的笔算方法(列竖式计算)。
2.理解用第二个因数的十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
3.培养学生良好的书写习惯,树立细节决定成败的思想。教学重点1.掌握两位数乘以两位数(不进位)的笔算方法,并会正确计算。2.解决乘的顺序和第二部分积的书写位置问题。
教学过程:
一.创设情境,复习旧知。
师:昨天去书店买书,每套书有14本,那么买3套有多少本?生:14×3=42(本)。
师:那老师如果买10套书,又有多少本?生:14×10=140(本)。
二、探索新知,明确算理:
师:你为什么要这么列?
生:要求有多少本书,也就是要求12个14是多少。
师:说的真不错,请同学们估算一下,14×12大约得多少?
生1:我把12估成10,大约是140本。生2:我把14估成10.大约是120本。生3:我把14和12都估成10,大约有100本。
生:我们都是估小的。
2、师:14×12到底得多少,你能算出准确的答案吗?下面拿出老师给你们准备好的点子图,用黑笔试着在纸上用我们学过的方法来,分一分,圈一圈,算一算。把14×12的结果写出来。
生:独立思考后在纸上写出得数。
4、师巡视,拿出几个同学的做法并投影。
生1:14×4=56(本)56×3=168(本)。
师:先把12分成3个4,再算12乘4,最后算56乘3,这是一个好方法。
生2:14×6=84(本)84×2=168(本)师:这也是一个好方法。
生3:14×10=140(本)14×2=28(本)140+28=168(本)师刚才这几位同学都是通过先分后和的方法,把未知的知识转化成已学的知识来解决新的问题。说明同学们都积极动脑思考了,真棒。
生:用列竖式的方法计算。师:这就是我们今天要学习的内容两位数乘两位数的笔算乘法。现在你们在自己的草稿纸上试着列一列。
师:巡视,请几位同学上台板书。
5、师:请你讲讲你是怎么做的?(生讲计算的过程)。
师:谁跟他的方法相同?你能再讲一遍吗?
师:我把刚才同学们计算的过程整理出来了,想给同学们演示一遍,让我们一起再回顾一次。
师:同学们真了不起,自己通过计算掌握了两位数乘两位数的计算方法。
三、巩固练习,拓展应用:
1.老师来考察一下你们的掌握情况,让我们看看第一关:巧填数字。
2、第一关我们已经顺利的过关了,现在来考察你的眼力,看看第二关:火眼金睛。
3、师:请看第三关:智力冲浪。你们有信心吗?
一本书有300页,如果每天读22页,2周能读完吗?
如果每天读40页,7天能读完吗?
4、师:同学们在这么短的时间里帮村长想出了这么多种方法,真是太感谢了。同时也恭喜同学们顺利过关。
恭喜做对的同学,你们和喜羊羊一起获得了这场智力大比拼的胜利。
四、总结:
师:短暂而愉快的四十分钟转眼就过去了,谁能说说通过本节课的学习你都有哪些收获?
生1:我学会了用竖式进行笔算乘法。
生2:(答略)。
师:其实这节课上同学们表现出了求知的欲望和探索的精神,对你们的表现老师非常满意,希望同学们能在生活中做一个有心人。
笔算两位数乘两位数教学设计(优秀17篇)篇十七
本课内容是在学生已经掌握了100以内的口算和笔算的基础上进行教学,学生在知识的掌握上已经不存在困难。而口算速度的快慢,则直接影响着后面笔算知识的掌握程度,甚至会影响后续数学知识的学习。因此,寻找一种简便的口算方式提高口算能力是这节课的重点。同时,我们知道要提高“两位数加两位数”的口算速度,通常要“直接从高位算”起,这样比较符合算式的观察和数的书写顺序。而学生却因为长期受笔算的影响,“直接从个位加起”的算法已经根深蒂固。为了解决这两者之间的矛盾,特意采用了“听算”这样一种口算形式进行教学,让学生在听算的过程中,感悟“直接从高位算起”算法的优越性。
设计理念。
1、联系学生的生活实际,为新知识的学习提供丰富的现实背景。数学与生活有密切的联系,学习内容的呈现应该贴近学生生活,让学生在生动、丰富的背景中学习数学,感受数学与现实的联系,体会数学的价值。因此,本课为计算教学设计了学生跳绳的现实情境,使学生充分感受到计算与生活的联系,同时提高解决实际问题的能力。
2、重视学生已有的知识和经验,注意体现算法多样化。
《数学课程标准》提倡算法多样化,目的是提倡学生个性化的学习,变“学方法”为主动地构建方法。在本课的设计中,让学生在“比一比谁的方法最多”中自主探究,体验算法多样化,在交流、比较的基础上不断地完善自己的想法,1并在练习中感悟最佳的方法,实现方法优化。
3、在开放中合作,在交流中收获。
知识与能力:经历探究两位数加两位数口算方法的过程,能熟练地进行口算;过程与方法:经历算法的多样化和解决问题策略的多样化的探究过程,培养学生根据具体情况选择适当方法解决问题的意识。
教学难点。
课件、教学过程。
一、以旧引新,揭示课题。
1、口算下列各题。课件出示。
指名学生说说结果。
2、说出下列各数的组成。课件出示。
把复习旧知的过程隐含与揭题的过程中,既让学生自然感觉到新旧知识的紧密联系,又让。
2学生初步感知“拆数”的计算方法,为探索新知识作好知识和心理上的准备。
二、创设情景,导入新课。
1、师:课间活动时同学们是不是喜欢跳绳呢?小华、小红和小军他们也喜欢跳绳,我们一起来看看吧。
2、出示主题图。
数学来源于生活,也应用于生活。用贴近儿童实际的“跳绳”的情境导入,容易激发学生的求知欲,激活学生的已有知识和生活经验,使学生能够自主地探究新知,解决问题。
三、收集信息,提出问题。
1、观察主题图,收集信息。
师:从这幅图上你得到了哪些信息?学生观察主题图并收集信息:
生1:小华跳了45下,小红比小华多跳28下。生2:小军比小华多跳23下。
2、提出数学问题并列式。
四、探究算法,学习新知。
(一)计算45+23你是怎么算的?
生:40+20=60,5+3=8,60+8=68。
师:很好!同学们,你看懂了吗?(个位数加个位数,十位数加十位数)还有别的算法吗?生:45+20=65,65+3=68。
师:和他相同的请举手,你是怎么想的呢?说给同桌听一听。再想想,还能怎么算?
3生:23+40=63,63+5=68。„„。
(二)计算45+28师:请你挑选一种你喜欢的方法来算一算,并把想的过程写下来。指名三人上前板演。其他同学反馈:
1、40+20=60,5+8=13,60+13=73。
2、45+20=65,65+8=73。
3、28+40=68,68+5=73。
师:在这么多的算法中,你最喜欢哪一种呢?说说你的理由?学生自由发言。
(小结:这种把数拆开的方法叫拆数法。用拆数法时要选择使计算简便的拆法,并且拆开后从高位开始加起。)。
(三)观察、比较,寻找异同点。师:这两道算式有什么相同的地方呢?生:都是加法。生:这些数都是两位数。
师:那这两道算式有什么不同的地方呢?生:一道是进位的,一道是不进位的。师:同学们很聪明,在口算是要特别注意区别!
提倡算法多样化,实质是尊重学生个性发展,提倡个性化的学习,支持并鼓励学生用自己喜欢的、熟悉的方法去解决问题,让学生在数学学习中张扬个性。但是在张扬个性的同时更应让学生通过对各种方法进行分析、讨论、比较,吸取各种方法的精华,悟出最佳方法。
五、巩固练习,拓展延伸。
1、口算练习。课件出示:
并要求学生尝试从直接从十位算起。
2、判断题。
4课件出示。
要求学生说出错在哪里,正确的结果是什么。
3、其他练习。课件出示购物问题。
让学生根据信息提出问题并解决问题。生自由发言。
师:请用算式表示出来。怎么计算呢?指名说一说。„„。
练习的设计紧紧围绕着教学的目标,针对教学的重难点展开:口算的练习是为了让学生通过计算引发对“直接从十位算起”算法的优势的感悟;解决问题的设计不仅仅是为了让学生体验解决问题策略的多样化,并及时进行优化,还有是为了对“直接从十位算起”算法进行拓展。
六、全课小结。
1、由老师引领学生回顾本节课学了什么?
口算方法。
跳绳问题。
解决方法。
最好方法。
2、让学生畅所欲言,谈谈这节课的收获体会这节课你有什么收获?(想好几句话,说一说。)。
通过回顾和总结对教学内容进行简单的梳理,向学生渗透一种解决问题的策略和数学学习思想,而让学生畅所欲言,说收获谈体会,更能让学生获得成功的体验,增强学好数学的自信。