多边形的内角和教案(优质15篇)

时间:2025-05-05 作者:BW笔侠

制定教学工作计划需要充分考虑学生的学习习惯和兴趣,提高学习积极性和效果。以下是小编为大家整理的教学工作计划范文,供大家参考。希望能帮助到大家,共同提升教学水平。让我们一起来看看吧。

多边形的内角和教案(优质15篇)篇一

知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想。

重点:多边形内角和定理的探索和应用。

教学难点:边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.。

教学过程。

第一环节创设现实情境,提出问题,引入新(3分钟,学生思考问题,入)。

1.多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形.。

2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

第二环节概念形成(5分钟,学生理解定义)。

第三环节实验探究(12分钟,学生动手操作,探究内角和)。

(以四人小组为单位展开探究活动)。

活动一:利用四边形探索四边形内角和。

要求:先独立思考再小组合作交流完成.)。

(师巡视,了解学生探索进程并适当点拨.)。

(生思考后交流,把不同的方案在纸上完成.)。

……(组间交流,教师展示几种方法)。

进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

活动二:探索五边形内角和。

(要求:独立思考,自主完成.)。

第四环节思维升华(5分钟,教师引导学生进行推算)。

教学过程:

探索n边形内角和,并试着说明理由。

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)。

n边形的内角和=(n—2)180°。

正n边形的一个内角==。

第五环节能力拓展(12分钟,学生抢答)。

抢答题:

1.正八边形的内角和为_______.

3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.

应用发散:

第六环节时小结:(3分钟,学生填表)。

第七环节布置作业:习题4、10。

b组(中等生)1。

c组(后三分之一生)1。

教学反思:

多边形的内角和教案(优质15篇)篇二

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180?,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180?的和是540?。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。

方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。

(二)引申思考,培养创新。

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的'和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440?,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

八、教学反思:

1、教的转变。

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变。

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变。

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

文档为doc格式。

多边形的内角和教案(优质15篇)篇三

上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。

首先我先复习相关知识,引出新的问题,明确指出虽然采用的分割方法不同,但是目标是一致的,都是通过添加辅助线,把未知的多边形的内角和转化为一些三角形的内角和,向学生渗透了“转化”这种数学思想方法。在此教学中,只须真正实施民主的开放式教学,创设平等、民主、宽松的教学氛围,使师生完全处于平等的地位,学生才能敞开思想,积极参与教学活动,才能最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的机会显示灵性,展现个性。在问题探究、合作交流、形成共识的基础上,在课堂活动中经历、感悟知识的生成、发展与变化过程,也只有这样,才能将创新教育的目标落到实处,让学生在自主参与学习,解决问题、尝试到一题多证的方法,体验到参与的乐趣、合作的价值,并获得成功的体验。

六、案例点评。

陈老师在本节课的教学设计上,内容丰富,过程非常具体,设计也较合理。整节课以推导多边形的内角和为线索,让学生经历了提问题、画图、判断、找规律、猜想出一般性的结论。另外,能够体现了用新教材的思想,体现了学生的主体地位,体现了新的教学理念,也符合初中生的心理特点和年龄特征,因此在教学设计上是比较好的。

但是随堂练习太少而不精,并且没有梯度,能否可以设计一些具有一定难度的练习,使不同的学生得到不同层次的发展,为学有余力的学生提供更大的学习和发展空间。另外,关于多边形的内角和的推导不必要一一讲解,只要引导学生解决了探索方法1和探索方法2就可以了,对于探索方法3,可以让学生课后思考。

多边形的内角和教案(优质15篇)篇四

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

文档为doc格式。

多边形的内角和教案(优质15篇)篇五

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的`有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

多边形的内角和教案(优质15篇)篇六

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的`数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;。

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;。

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

四边形的概念。

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2)。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

多边形的内角和教案(优质15篇)篇七

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

教学重点:多边形的内角和公式

教学难点:多边形内角和公式

讲解法、练习法、分小组讨论法

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

多边形的内角和教案(优质15篇)篇八

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180?,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180?的和是540?。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。

方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的'和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440?,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

八、教学反思:

1、教的转变。

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变。

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变。

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

多边形的内角和教案(优质15篇)篇九

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

讲解法、练习法、分小组讨论法。

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1.导入新知。

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的。

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2.生成新知。

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此。

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证。

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3.深化新知。

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求。

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4.巩固提高。

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5.小结作业。

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

多边形的内角和教案(优质15篇)篇十

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标 :

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点 :

教学过程 :

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2) 。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业 :课本130页2、3、4题.

多边形的内角和教案(优质15篇)篇十一

尊敬的各位领导:

老师大家好!

由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。

《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。

教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。

学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。

有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。

知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。

过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。

教学难点:字母表达式的总结

教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。

学生学具准备四边形、五边形等多边形图片模型,三角板。

教学过程共分为四个环节。

教学过程:

一、创设情境,回顾三角形知识---注重知识的“生长点”

同学们请看这是什么图形?你了解它吗?你能向大家介绍三角形哪些知识?(这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)

我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。

二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。

1、四边形内角和

(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)

有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)

我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)

我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)

(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)

(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”

撕角法,起名字“拼角求和法”。

切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)

归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)

2、五边形内角和

今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。

总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”

列出算式:180x3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)

利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)

现在我们就来看一看其他图形是不是也有这样的规律?

3、六边形、七边形内角和

小组合作,自己完成探究过程,填写表格。

学生汇报,总结画出的线段数和三角形个数之间联系。

三、归纳总结,形成规律---注重字母表达式的推理

通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?

90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)

师:今天你学到了什么?在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗?老师期待你在课后的研究成果。(设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)

以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!

多边形的内角和教案(优质15篇)篇十二

教学目标 。

知识技能。

通过探究,归纳出   。

数学思考。

1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、 通过把多边形转化成三角形体会转化思想在几何中的应用,同时。

时让学生体会从特殊到一般的认识问题的方法。

3、 通过探索多边形内角和公式,让学生逐步从实验几何过度到。

论证几何。

解决问题。

通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。

情感态度。

通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。

重点。

难点。

在探索时,如何把多边形转化成三角形。

知识联系。

多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。

知识背景。

对多边形在生活中有所认识。

学习兴趣。

通过探究过程更能激发学生学习的兴趣。

教学工具。

三角板和几何画板。

教学流程设计。

活动流程图。

活动内容和目的。

活动一,教师和学生任意画几个多边形,用量角器测其内角和。

活动四、探索任意公式。

活动六、小结和布置作业 。

通过分组测量,得出这几个。

通过用不同方法分割四边形为三角形,探索四边形的内角和。

通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力。

通过画正八边形体会和应用。

梳理所学知识,达到巩固发展和提高的目的。

教学过程 设计。

问题与情景。

师生行为。

设计意图。

设计情景:什么是正多边形?

正八边形有什么特点?

你会画边长为3cm的正八边形吗?

学生思考并回答问题。

学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。

活动1、

在练习本画出任意四边形,五边星,六边形,七边形。

通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想。

活动2(重点)(难点)。

学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。

通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。

通过分割及推理,进一步培养学生的解决问题和推理的能力。

活动4、探索任意。

把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。

活动5、画一个边长为3cm的八边形。

让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示。

活动6、小结和布置作业 。

师生共同回顾本节所学过的内容。

多边形的内角和教案(优质15篇)篇十三

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】。

【数学思考】。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

【教学重点】。

【教学难点】。

探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2、学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的.理解,体会由简单到复杂,由特殊到一般的思想方法。

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

活动3:

尝试完成第五列n边形的探究。

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是边形。

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形。

(5)一个多边形的内角和等于720度,那么这个多边形是边形。

3、环节三:例题讲解,知识巩固。

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华。

(1)智慧大比拼。

内容:p87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究。

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博。

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果。

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升。

(1)习题7。3第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

板书设计:

以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教。我的说课到此结束,谢谢大家。

多边形的内角和教案(优质15篇)篇十四

教学目标:

1、经历认识多边形的过程,能够初步认识四边形、五边形、六边形等平面图形。

2、进一步增强动手操作能力、语言表达能力和发散思维能力。

3、在学习活动中增强对数学的兴趣,培养交往、合作意识。

教学重点:让学生通过观察、比较、合作交流等活动认识四边形、五边形、六边形等平面图形。

教学难点:理解边的概念明白图形按边的数量分类、命名的意义。

教学准备:教师准备板书贴图、多媒体课件、长方形和正方形的纸各一张。学生每人准备长方形和正方形的纸各一张,8根小棒,一把剪刀。

教学过程:一、创设情境,激起兴趣1、谈话:小朋友们,今天我们教室里来了一位新朋友,瞧,它是谁?(多媒体出示)谈话:喜洋洋新盖的房子里可漂亮了!大家想不想去看看?(多媒体出示图片)喜洋洋的新房子上藏着许多我们已经学过的图形,你能认出来吗?(教师指,学生回答)。今天这节课呢!我们继续来认识图形。2、谈话:为了装修新房子啊,喜洋洋还买来了这两种形状的地砖,瞧!(电脑出示)地砖的面是什么形状呢?生回答,是:长方形和正方形。(贴出长方形和正方形)。

二、操作观察,探索新知1、认识四边形小朋友,长方形、正方形就像兄弟两个,他们还有个共同的名字呢?你们知道吗?猜猜看?指名几人猜一猜(四边形)。你们为什么称它是四边形呢?指名学生说。教师赞同学生的意见,同时板书“四边形”。知道长方形、正方形可以叫四边形。那好,我们就先一起来数一数长方形的四条边。(1)操作:请大家拿出长方形的彩纸,用左手竖直举在面前。师示范摸一条边,这就是长方形的一条边。请小朋友自己摸一摸、数一数长方形有几条边。反馈:你是怎么数的'?指名2个学生上台数。(可能会有不同的数法,要肯定有顺序数的一种,同时强调要记住第一条在哪里)。跟着电脑一起有顺序的数。

(2)那正方形呢?你也能来数一数正方形有几条边吗?请一人上黑板前指。电脑演示。小结:通过数,我们知道长方形和正方形各有四条边,它们都是四边形。

2、练一练(1)问:小朋友想一想,我们学过的图形里,还有哪个也是四边形?

指名学生回答(平行四边形,出示)。(贴出平行四边形的图片)。

(1)认一认谈话:喜洋洋搬运时不小心把瓷砖打破了几块,老师选了2块,把它们的形状描下来了,看看,它们有几条边?是几边形呢?(贴出书上的五边形)你能来指出它们的五条边吗?指名上台指,第1个由1人指,第2个由1人带领全班一起数。小结:这两个图形各有五条边,叫做五边形。

(3)搭一搭五边形和六边形还有其他样子的吗?(有)先请小朋友先认真的想一想。操作:请同桌两个小朋友一人搭五边形,一人搭六边形,看看最少要用多少根小棒?学生活动,一组同桌在实物投影上搭。问一问用了几根小棒。小结:我们用5根小棒,做五边形的5条边,用6根小棒,做六边形的6条边,搭出了五边形和六边形。小棒收起,推至桌角。

三、实践运用,巩固新知。1、问:我们已经认识了四边形、五边形和六边形,现在它们在一起聚会了,你还能分得清吗?出示第3题。一人读要求,解释题意。独立在作业纸上完成。指名回答。

2、小朋友分得真清楚,它们还会在一起变魔术呢。四边形可以变成五边形,五边形可以变成六边形,六边形又能变成四边形,你相信吗?请小朋友拿出一张长方形纸,先自己试一试。然后教师电脑屏幕演示,学生完成填空。

3、刚才的折纸有趣吗?再来看,我这里还有一张正方形纸,如果从上面剪去一个三角形,剩下的是什么图形呢?猜猜看。(先在脑海里想象一下,它剩下的会是什么图形呢?先请小朋友认真的想一想。指名回答。那怎样剪是四边形,怎样剪是五边形呢?请你拿出剪刀,来试一试吧。学生操作,师挑选好的贴上黑板。

4、刚才我们活动开展的热热闹闹,现在,我们要来安静的读题、做题,能做到吗?出示第5题。把下面每个图形都分成三角形,最少能分成几个?审题。这句话里要注意什么?试画第一个,猜猜看,可以怎么画,最少分成几个三角形?指名回答,师画。第二、三个学生独立完成,2人板演,反馈。(优化方法)。

四、全课总结。通过今天的学习你有什么收获呢?你是怎样来区分的呢?猜猜看,还会有几边形呢?我们把这些图形呢统称为多边形。(揭题:认识多边形)。

五、作业布置。

在生活中有许多这样的图形,请小朋友们找一找,并向爸爸妈妈介绍一下。

多边形的内角和教案(优质15篇)篇十五

(2)怎样才能知道一个图形是几边形呢?也就是说如果有四条边围成的图形就是四边形,五条边围成的图形呢?六条?七条呢?也就是说有几天边围成的图形就是几边形。

(3)像这样边数比较多的图形,我们给他们一个统一的名字叫多边形,今天我们就认识了这些多边形(板书课题)。

三、巩固练习、提升拓展。

1、数一数。

瞧,这是几边形?(六边形),六边形有几条边?那咱们就在中间写上6。那数数下面的图形各有几条边,照样子写在图形上。

谁来校对?按顺序说是每个图形分别有几条边?都对吗?真棒!

接下来,数一数每种图形分别有几个,填在表格里。谁来说?跟着数一数,四边形:1、2、3、4,4个。五边形:1、2、33个。六边形:1、22个。有数错的吗?没有?都对了!真棒!像这样做上标记,就不会数错和遗漏了。作业纸放回原地,看谁做的好!

2、围一围。

认识了这么多的多边形,知道老师喜欢哪一个吗?仔细看(示范围)现在,你知道我喜欢的多边形是?(五边形)对了,你也想围一围吗?先想一想你最喜欢几边形,然后动手围一围。

谁来展示一下自己围的作品,大声告诉大家你喜欢的是什么图形。

(1)、你围的是?数数它的边?对吗?也喜欢四边形的吧作品举高,向大家展示一下你的作品!

(2)还有喜欢其他图形的吗?一一交流展示。

3、折一折。

小朋友们的动手能力真不错,接下来老师要考考你们,看看你们是否既会动手又会动脑。看,出示正方形纸,老师演示,我折了一个(三角形)反过来,剩下的是(五边形),你能折一个比老师大的三角形吗?反过来数一数,折掉一个三角形后剩下的是什么图形。

谁来说,你折掉一个三角形后剩下的是几边形?

预设一:跟老师一样。折出一个三角形,剩下的`是五边形。

预设二:我这样折一个三角形(对角线折),剩下的还是三角形。你真棒!

预设三:我这样折一个三角形,剩下的是一个四边形。哦,了不起!

真是一群小巧手!小朋友们太厉害了!想到了三种折法(课件同步展示三种不同的折法)是呀!同样的正方形纸,当折掉的三角形越来越大,剩下的图形就可能不一样!

4、找一找。

图形宝宝们看见小朋友们玩得这么开心,它们也玩起了捉迷藏的游戏,从图中能找到几边形?(四边形)你能找到几个?(点击出示题目)看谁找的多?作业纸第3题,开始。

汇报、交流:(1)生:5个。师:(怀疑)5个呐?我只找到4个1。2。3。4生:还有一个最大的。哦,你比老师厉害,还多找了一个,你看他找的多不多!不多呀?还有?(疑惑)。

(2)生:7个。师同(1)的步骤教学。如果在5个的基础上,就:又多了两个,你来指一指多的两个在哪?看明白了吗?他把两个小的四边形合成了一个大四边形,你更厉害!找到了7个。还有?(更疑惑)。

(3)生:9个。直接说9个的,还是同(1)的步骤教学。如果在(2)的基础上,就:比7个还多2个,还有两个在哪?你来指一指。你是真的厉害,找到了9个四边形,佩服!你们都看明白了吗?来,咱们一起再来有序的数一数:1个,2个,3个,4个,两个两个的合并,横着看:这是第5个,第6个。再竖着看:第7个,第8个。还有一个最大的,第9个。(5,6,7,8,9数慢一点)原来里面一共藏了9个四边形呢!刚才找到9个的小朋友举手,你们真棒!

四、课堂小结展示生活中的多边形。

小朋友们,今天,咱们认识了图形王国里的?手指板书:(四边形,五边形,六边形),以后还会有更多的图形。这些变化多样的图形点缀了我们的生活,劳动人民用他们的智慧创造了这美丽的图案,瞧,这是古代园林的窗格图,里面的图形可丰富了!课后用你的双眼仔细观察,长大以后,创造更美好的生活!谢谢大家!

猜你喜欢 网友关注 本周热点 精品推荐
青春是一个人拥有梦想和追求的时期,我们应该努力去追逐自己的梦想,实现自己的目标。以下是一些青春的经典语录和名言,让我们一起品味青春的智慧。1、每个人,都坚强的活
7.奖学金申请书的撰写需要突出自己的优势和特长,同时也要符合申请条件和学校的要求。以下是小编为大家收集的奖学金申请书范文,仅供参考,大家一起来看看吧。
通过月工作总结,我们可以了解自己在工作中的优点和不足,从而提高自身的工作能力和水平。以下是小编精选的一些范文和案例,希望能够引起大家对月工作总结的兴趣和重视。
通过编写工作计划范文,我们可以对过去的工作进行回顾和总结,为今后的工作提供经验和借鉴。以下是一些实用的工作计划范文,通过学习这些范文,可以提升自己的工作计划能力
半年总结是发现问题和挖掘潜力的有效途径,有助于不断提高个人能力和素质。下面是一些关于半年总结的经验分享,希望能够对大家的写作有所帮助。转眼间来xx快三年了,这三
优秀作文展现了作者独特的写作风格和表达能力,让人印象深刻。下面是小编为大家整理的一些优秀作文范文,愿大家能够从中受益,写出更好的作品。20xx年8月,第二届“青
月工作总结可以帮助我们发现工作中的不足,为下一个月的工作做出改进和调整。这些月工作总结范文是多年工作经验的积累和总结,对于我们写作月工作总结具有很大的借鉴意义。
思想是人类在实践中对客观世界的把握和认识,是我们认识自我和他人的重要手段。以下是一些思想的评论和评析,希望能够对大家的思考和理解有所启发。上帝是个爱开玩笑的老头
范文范本的阅读可以拓宽我们的知识面,丰富我们的语言和表达方式。下面是一些范文范本的分享,希望能为大家的写作提供一些参考和思路。论文的写作就会促进专业知识向应用能
范文范本是对我们的写作能力进行评估和比较的一种工具,可以帮助我们发现自己的不足和提高空间。下面是小编整理的一份范文范本,希望能够给大家在写作时提供一些思路和灵感
护理是一门高尚的职业,护士们以热忱和奉献精神为病患提供关怀和安慰。小编为大家整理了一些护理总结的典型例子,供大家参考和学习。耐心为基本,努力做到眼勤,手勤,脚勤
优秀作文给人以启迪,让读者在文字的世界里体味到人生的酸甜苦辣,思考人生的意义和价值。优秀作文描绘了作者深入思考的过程,展现出独特的观点和深刻的思考能力。它不仅具
在服务月期间,我们可以开展一些社区服务活动,密切社区与居民的关系,营造和谐的社会氛围。以下是一些服务月活动中所进行的公益义诊和健康咨询活动,让我们一起关注和呵护
面试是一种考察应聘者沟通能力和应变能力的考试形式,它可以展现应聘者的思维逻辑和个人魅力。如果你想了解更多面试的技巧和注意事项,那么以下是一些实用的建议和经验分享
技术工作总结能够帮助我们建立良好的技术文档和知识库,方便团队成员之间的交流和沟通。在阅读技术工作总结范文时,要注意思考和分析,将其应用到自己的工作实践中。
优秀作文是富有鲜明个性和强烈感染力的文字,它能够引起读者的共鸣并留下深刻的印象。小编特意挑选了一些获奖的优秀作文供大家参考,希望能给大家写作带来一些启示。
在党员发展过程中,入党转正申请书扮演着桥梁和纽带的作用,它记录了党员在一段时间内的成长和变化。借鉴他人的成功经验往往能够提升自己的写作水平,以下是一份入党转正申
年终总结是个人和组织能力提升的重要手段,它可以帮助我们在未来更好地规划和实现目标。以下是一些年终总结的写作范文,希望能为大家提供一些写作技巧和指导。
写读后感不仅是对书籍的一种回响,也是对自己思考和心灵感悟的一种呈现方式。以下是小编整理的一些优秀读后感范文,希望能为大家提供一些写作上的参考和借鉴。
个人总结是对自己学习和工作的一种自我梳理和总结,对于今后的发展具有重要的启示作用。接下来,请大家浏览一下以下的个人总结范文,或许可以给大家提供一些写作的灵感。
无论是在学校还是在社会上,我们都需要掌握一些自我介绍的技巧,以便与他人建立良好的人际关系。接下来是一些成功人士的自我介绍范文,让我们一起来看看他们是如何展示自己
作为一个月的结束,是时候对过去一个月的工作进行总结了。在接下来的内容中,小编为大家整理了一些关于月工作总结的范文,供大家参考和学习。作为支部宣传委员,我本人能够
读后感是对所读内容的个人感受和体验的表达,它可以帮助我们更好地与作者进行心灵的交流和沟通。以下是小编为大家准备的一些经典读后感,通过看看他人的观点可以拓宽我们对
在写心得体会的过程中,我们可以反思自己的成长经历、遇到的困难以及取得的进步,从而更好地总结经验和教训。下面是一些写得不错的心得体会样文,希望能够给大家一些写作指
优秀作文不仅仅是语言流畅,更要有独特的观点和深入的思考。以下是小编为大家搜集整理的一些优秀作文范文,希望对大家有所帮助。轻轻的打开一扇窗,静静的,啜饮一口茶,我
总之,社会实践报告是学生在实践活动中重要的成果之一,它能够培养学生的实践能力和创新思维,提高学生的综合素质。以下是小编为大家收集的社会实践报告范文,希望能给大家
写一份月工作总结是对自己工作的一份交代,也是对自己的一种成长。以下是小编为大家收集的月工作总结范文,希望对大家写作有所帮助。药店是指零售药品的门市。中医史上第一
自我介绍是一种展示个人能力和特长的机会,可以让他人对我们有更全面的了解。小编为大家整理了一些常用的自我介绍模板和句型,供大家参考使用。自我介绍:本人家穷人丑,病
优秀作文是对生活的热爱和感悟,它可以激发人们对美好的追求和向往。在这里,小编为大家整理了一些精彩纷呈的优秀作文,它们或让我们思考人生,或让我们感受到自然的美妙。
通过公务员工作总结,可以及时总结自己在工作中的经验和教训,为未来的工作提供参考和借鉴。为了帮助大家更好地撰写公务员工作总结,小编整理了一些经典的范文,欢迎大家一
教学计划可以帮助教师更好地分配教学时间和资源,确保教学的连贯性和高效性。以下是一些教学计划设计的案例分析,供大家学习和参考。1、认识“荷”、“珠”等12个生字,
优秀作文具有丰富的内容和独特的观点,能够引起读者的兴趣和共鸣。小编为大家整理了一些优秀作文范文,希望通过阅读这些作品,能够激发大家的写作灵感和创作能力。
参与社会实践可以增加自己的社会经验,为以后的学习和工作打下坚实基础。以下是一些社会实践报告,详细记录了参与实践活动的过程、方法和成果,在此与大家共享。
工作汇报是激励自己并激发团队士气的一种方式,它能够让我们更加有动力地追求目标。接下来是一些经验丰富的工作汇报范文,希望能给你带来一些启发和思考。xx村位于xx镇
优秀作文能够通过细腻的描写和生动的场景再现,给人以直观的感受和体验。小编为大家整理了一些优秀作文的欣赏,希望能够帮助大家提高作文水平。抬起头来仰望乡村的天空,原
期末考试即将来临,是对我们一学期学习成果的综合检验和总结。希望以下这些期末总结范文能够对大家写作提供一些参考和启示。榜样是什么?榜样是船。让我扬起希望的帆,带我
一篇优秀作文往往能够给读者以启发和思考,引发对人生、社会等问题的深思。阅读一些优秀作文的范本,有助于提高自己的写作水平和思辨能力。今天早上,天气格外明媚。正是去
优秀作文是注重细节和语法的准确性,能够展示作者对语言规范的理解和掌握程度。以下是一些优秀作文的范文,希望能够给大家写作提供一些参考和指导。我的新学期打算是:首先
培训心得体会是对培训过程进行梳理和整理,帮助我们更好地记忆和掌握所学内容。小编找到了一些名人名言和培训心得体会的摘抄,希望能够给大家带来一些启示和思考。
青春是友情的季节,我们应该与朋友们一起分享快乐和困难。青春是一段美丽的旅程,让我们一起走过这段旅程,留下美好的回忆。它,有一个很美的名字,叫"时间"。时间,为什
心得体会是对人生、学习、工作等方面的一种思考和总结,它可以帮助我们更好地了解自己和他人,促进个人成长和进步。现在,我们为大家推荐几篇优秀的心得体会样文,希望能够
优秀作文通过独特的结构和逻辑,使文章内容更加紧凑和有力。接下来,小编将为大家推荐一些优秀作文的范文,希望能够给大家提供一些写作的思路和灵感。今天,我故地重游,回
培训心得体会的撰写可以提升个人的语言表达和写作能力,培养综合素质。下面是一些精选的培训心得体会范文,希望能为大家的写作提供一些借鉴和参考。现如今,随着互联网的飞
培训心得体会是培训过程中的重要成果之一,也是对自己学习效果的一种评估和总结。培训心得体会范文的写作一般会倾向于积极和正面的评价,希望能给大家带来一份鼓励和动力。
活动方案的设计是保障活动的有序进行和顺利实施的重要环节。下面是一些经过精心策划和执行的活动方案,它们展示了团队的凝聚力和创造力,也是成功的范例。有关医学研究表明
总结是一个反思自己工作的机会,可以帮助我们更好地改进卫生工作的方法和策略。卫生工作总结是一种反思和总结的过程,以下是一些卫生工作总结范文,供大家参考和学习。
安全演讲稿要求语言简练明了,能够引起听众的共鸣和注意。以下是小编为大家整理的安全演讲稿,供大家参考和学习。尊敬的老师、同学们:大家好!保护人民安全是消防员的天职
个人总结是对我自己在一段时间内的学习、工作、生活等方面进行总结和概括的重要文献。以下是小编为大家收集的个人总结范文,供大家参考和借鉴。这次实习不是第一次实习,但
药师工作总结是对一段时间内药师工作表现的概括和总结,可以帮助我们审视自己的工作状态。接下来是小编整理的一些优秀药师工作总结范文,希望对大家有所启发和帮助。
优秀作文不仅能够引起读者的共鸣,还能够给读者带来思考和启发。以下是小编为大家精选的一些优秀作文范文,让我们一起来欣赏和学习。每个人心中都有自己五彩缤纷的梦,都有
文明礼仪是社会交往中的一种重要表现,它能够促进人与人之间的和谐相处。以下是小编为大家收集的文明礼仪总结范文,希望对大家有所启发和参考。礼仪是指人在社会交往中由于
医院工作总结是医生评选先进和晋升职位的重要参考依据。接下来,我们将为大家分享一些医院工作总结的实例,希望能给大家提供一些灵感和思路。在过去的一年里,我按照院要求
心得体会是对自己经历和体验的总结,可以让我们更加珍惜和感恩身边的一切。3.以下是一些精选的心得体会范文,希望能够帮助大家更好地理解写作要领。新课程下的一堂好课,
家长会是家庭教育和学校教育相结合的桥梁,有助于孩子全面发展。家长会应注重倾听家长的声音,及时反馈和处理家长提出的问题和建议。尊敬的各位家长,你们好!首先,让我代
通过个人总结,我们能够更好地了解自己,认识到自己的成长和进步,同时也发现自己的不足之处。下面是一些优秀的个人总结样本,希望能帮助大家更好地完成自己的个人总结。
写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。"通过心得体会,我明白了工作中团队合作的重要性,因此我要努力发展自己的合作能力,为团队的成功做出贡
岗位职责的改变应该经过充分的沟通和协商,确保员工的参与感和满意度。财务主管的岗位职责包括负责资金管理、制定财务规划、监控预算执行等。1、负责生产车间每天的产品产
通过演讲稿,我们可以提前准备好重要观点和要点,避免场上紧张和思维混乱。演讲稿范文中的演讲手法和思考方式给我们提供了一个思考问题、表达观点和影响他人的范本。
优秀作文是通过对细节的把握和独特的观察力展现出作者独到的见解和思考,给读者以思考和启示。在阅读这些优秀作文范文时,可以尝试分析其中的结构和语言运用,从中学习写作
在不同场合的自我介绍中,我们可以适当根据听众的特点和需求进行调整,以更好地达到交流的目的。自我介绍是一门艺术,以下的范文可以帮助大家更好地掌握这门艺术。
心得体会是对过去经验的反思,是对自身成长的深刻理解。当下小编为大家整理了一些关于心得体会的样例,希望能够对大家的写作提供一些参考。。读完了课文《秋天的怀念》,我
领导讲话稿的结尾应该有力而又引人思考,给听众留下深刻的印象和启发。阅读一些优秀领导讲话稿的片段,可以帮助我们更好地了解领导者的思想和风采,以及他们在特定场合下的
无论是参加面试还是加入新的团队,自我介绍都是展现自己的必备技能。以下是小编为大家精选的几篇自我介绍范文,希望能给大家提供一些参考和借鉴。尊敬的领导:您好!感谢您
写心得体会可以让我们更加深入地思考和分析自己的行为和决策。小编为大家准备了一些心得体会的范文,希望能给大家提供一些写作思路和参考。合集。。我园保育员坚持每天的消
经营需要不断地学习和创新,只有跟上时代的发展,企业才能在激烈的市场竞争中立于不败之地。以下是小编为大家整理的经营策略案例,供大家参考借鉴。甲、乙、两方本着互利共
讲话稿可以帮助我们更好地组织思路,确保我们表达的准确、有条理。通过阅读这些讲话稿,我们可以学到一些与听众沟通的技巧和方法,提高自己的演讲能力。尊敬的各位老师、亲
家长会是学校与家长之间的沟通桥梁,是为了促进学校和家庭之间的良好关系而设立的一种多方参与的交流平台。我们召开家长会的目的是为了让家长了解学校的教育理念、教学计划
一个优秀的开题报告可以为我们的研究工作赢得更多的认可和支持。如果你对如何撰写开题报告感到迷茫,不妨参考一些范文,让你的写作更加得心应手。一、设计依据及研究意义:
英语是一扇通往世界的窗口,可以让我们了解更广阔的世界。小编为大家整理了一些英语学习中常见的问题及解决方法,供大家参考。关于a的话题,早已引起了广泛的社会关注。如
规章制度的完备性和严格执行是保证社会稳定和和谐的基础。希望这些规章制度范文能够为大家提供一些规范和指导,帮助大家更好地管理和运营组织。1、负责卖场商品的美观陈列
英语是世界上最为广泛使用的语言之一,学好英语对我们的未来发展至关重要。每个人的写作风格和能力都是不同的,希望每个人都能找到适合自己的写作方法和技巧。
希望通过今天的交流与讨论,我们能够共同推动这个领域的进步与发展。当主持人能够与观众建立起良好的互动关系时,活动的效果会更加出色。合:老师们,同学们,大家好。今天
讲话稿的结束部分要得体,可以总结全文内容,或表达对听众的祝福、期望等。讲话稿范文中的感人故事和真实案例,能够更好地打动听众的心灵。尊敬的老师,各位叔叔阿姨:大家
在这个庄重而庄重的场合,我感到十分荣幸能够担任主持人的重任。接下来,请大家一起来欣赏一些成功的主持词范例,从中学习和汲取经验。b:我是乐乐。合:我们是百事可乐。
通过写心得体会,我们可以更好地回顾自己的成长历程,发现自己的不足,同时也可以反思和总结经验。以下是一些精选的心得体会范文,希望能够帮助大家更好地写作和思考。
生活中的心得体会是我们对生活中各种经历和事件的感悟和思考,它能够帮助我们更好地面对困难和挫折。小编为大家精心挑选了一些值得一读的心得体会,希望能给大家带来一些思
通过调查报告,我们可以了解到与所调查问题相关的背景信息和现状。以下是一份关于调查报告的详细说明,其中包含了实际案例和调研方法的介绍。1)随着移动通信的迅速发展,
教师思想汇报是对自己在工作中的思考和感悟进行总结并向上级汇报的一种重要形式。以下是一些教师思想汇报的精选片段,让我们一起来学习思考。敬爱的党组织:自从被组织确定
在实习中,我学到了许多实际操作的技巧和经验,这对我未来的工作将有很大帮助。接下来,我们一起读一读这些实习心得体会范文,从中汲取一些有益的经验和教训。
范文范本的创作需要结合实际情况,并具备一定的思辨能力和创造力。范文九:关于自我认知的范文,让我们反思自己的优点和不足。近期,吉林、北京、上海相继发生重特大恶性火
在计划书中,我们可以设置具体的措施和评估指标,以便在实施过程中有条不紊地进行。在下面这个计划书范文中,你们可以看到一些常见的写作技巧和表达方式,希望能够对你们的
党课是党员加强党性修养、强化党员意识的重要平台,可以推动党员更好地履行自己的党性使命。接下来是一些党课培训的经验总结,希望对大家有所启发。现在,党和国家事业中面
真实、客观和有价值的心得体会可以为他人提供借鉴和启示。下面是一些写作心得体会的实例,希望可以给大家带来一些灵感。随着全球化的深入推进,创新已经成为企业持续发展的
入党转正申请书是党员通过自己的言辞和文字向党组织展示自己对党的忠诚和对人民事业的热爱之情。下面是一些成功的入党转正申请书案例,可以作为我们写作的参考。
家长会能够增进教师与家长之间的互信,明确双方的期望和责任,提高教育质量。以下是家长会中提供的关于家庭教育的重要资讯,供大家参考。家长朋友们:你们好!首先感谢你们
优秀作文是一种能够展现作者内心世界和感受的艺术形式,它能够以文字传达出作者的情感和态度。下面是一些优秀作文的示例,希望能给大家带来一些灵感和启发。在生活中,我们
通过写培训心得,我们能够更好地记录下自己的成长和进步,同时也能够发现自己的不足和提升空间。以下是小编为大家收集的有关培训心得的范文,供大家参考借鉴。
通知应该具备及时性和可操作性,以最大程度地确保信息的传达和落实。以下是一些优秀通知的范文,它们涵盖了不同领域和情景下的通知,希望能够对你有所帮助。×××市工商行
检讨书是一种认真对待问题和挑战的态度,可以帮助我们面对失败和困难时更加坚韧和勇敢。在这里,小编为大家整理了一些优秀的检讨书样本,供大家参考和学习。尊敬的单位领导
月工作总结是对一个月内的工作情况做出的总结和概括,是一种反思和提高的机会。以下总结范文展示了不同层级和职位的工作总结,希望能为不同人群提供相关的参考和借鉴价值。
优秀作文需要有清晰的主题和明确的立意,能够给读者以思考和启示。在写作过程中,我们应该注重观察和思考生活中的点滴细节,以丰富作文的内容。桃林环抱着秀丽的村庄。霍尊
优秀作文具有独特的文风和个人特色,让人一读即可辨识出作者的独到之处。优秀作文是作者通过文字向读者传递自己的情感和思想的一种艺术表达形式,它可以促使我们思考,我想
撰写检讨书是一种自我管理和自我激励的方式,可以推动我们朝着更好的方向发展。检讨书是一种常见的书面材料,以下是一些写作检讨书的技巧和范例。尊敬的xxx:很遗憾要交
比赛经常被用来评选最优秀的个人或团体,并为他们提供更多的机会和资源。比赛是一种竞争性的活动,可以展现个人或团队的能力和实力。如何在比赛中发挥自己的长处和优势,成
我意识到自己在这段时间里有很多需要改进的地方,总结是一个对自己进步的机会。以下是小编为大家精选的心得体会范文,希望能给大家一些灵感和启迪。科学发展观的本质核心,
实习报告的写作应该注重对实习单位的介绍和评价,体现出对实习单位的真实了解和认识。请持续关注以下内容,了解更多关于实习报告的写作要点和范例分享。根据酒店管理专业计
月工作总结是每个月对自己在工作中的表现与成果进行总结和概括的一份重要文件,通过总结工作,可以发现问题、提升自己,因此,每个月都需要认真完成一份月工作总结。接下来
自我介绍也是我们展示自己独特性和个性魅力的途径,通过介绍,能够引起他人对我们的兴趣和好奇心。以下是一些经典的自我介绍范文,希望可以对大家有所帮助。各位领导们:大
在写检讨书时,我们需要真实地记录自己的思考和反省过程,并且诚实地反映自己对错误的看法和态度。针对不同行业的问题和挑战,以下是一些成功人士写的检讨书,供大家参考和
月工作总结有助于加强团队合作和沟通,促进同事之间的交流和共同成长。随着互联网的发展,有越来越多的人需要写月工作总结,以下是小编为大家准备的一些范文,供大家参考。