多边形的内角和教学设计(通用23篇)

时间:2025-05-29 作者:文锋

教学计划需要明确具体的教学步骤和教学方法,以便教师能够系统有序地进行教学。通过阅读以下教学计划范文,相信大家会对编写教学计划有更深入的理解和认识。

多边形的内角和教学设计(通用23篇)篇一

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

1、请看:我身后的建筑物是什么?——水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)。

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1。

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()。

a.十三边形b.十二边形。

c.十一边形d.十边形。

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

1、这节课你有什么新的收获?

教材第36页练习1、2题。

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

多边形的内角和教学设计(通用23篇)篇二

上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。

首先我先复习相关知识,引出新的问题,明确指出虽然采用的分割方法不同,但是目标是一致的,都是通过添加辅助线,把未知的多边形的内角和转化为一些三角形的内角和,向学生渗透了“转化”这种数学思想方法。在此教学中,只须真正实施民主的开放式教学,创设平等、民主、宽松的教学氛围,使师生完全处于平等的地位,学生才能敞开思想,积极参与教学活动,才能最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的机会显示灵性,展现个性。在问题探究、合作交流、形成共识的基础上,在课堂活动中经历、感悟知识的生成、发展与变化过程,也只有这样,才能将创新教育的目标落到实处,让学生在自主参与学习,解决问题、尝试到一题多证的方法,体验到参与的乐趣、合作的价值,并获得成功的体验。

六、案例点评。

陈老师在本节课的教学设计上,内容丰富,过程非常具体,设计也较合理。整节课以推导多边形的内角和为线索,让学生经历了提问题、画图、判断、找规律、猜想出一般性的结论。另外,能够体现了用新教材的思想,体现了学生的主体地位,体现了新的教学理念,也符合初中生的心理特点和年龄特征,因此在教学设计上是比较好的。

但是随堂练习太少而不精,并且没有梯度,能否可以设计一些具有一定难度的练习,使不同的学生得到不同层次的发展,为学有余力的学生提供更大的学习和发展空间。另外,关于多边形的内角和的推导不必要一一讲解,只要引导学生解决了探索方法1和探索方法2就可以了,对于探索方法3,可以让学生课后思考。

多边形的内角和教学设计(通用23篇)篇三

《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成,《多边形内角和》教学反思。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。

首先,在这节课的设计中,我大胆的尝试并使用网络教学。在我最初的设计过程中,按照常规的方法引导学生先用分割的`方法得到四边形内角和,再探究多边形的内角和。但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好。后来改为不做任何方法的指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究,教学反思《多边形内角和》教学反思》。总之我对探究课有了更深刻的理解。

这节课的第一个环节:引入,我认为比较精彩。利用诸葛八卦村作为情景引入,通过介绍他的三奇,一下子吸引学生的注意力。这样这节课的开头就像一块无形的“磁铁”,虽然只有短短的一两分钟,却有效的调动了学生的情绪,打动学生的心灵,形成良好的课堂气氛切人口。第三个环节:分层练习。充分发挥了网络课的优势,真正做到了分层。

其次,在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的`思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。

总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。

将本文的word文档下载到电脑,方便收藏和打印。

多边形的内角和教学设计(通用23篇)篇四

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标。

(2).过程和方法目标。

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标。

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位。

教学难点是探索和归纳多边形内角和的过程。

1、教材的地位与作用。

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用。

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此。

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计。

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用。

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

多边形的内角和教学设计(通用23篇)篇五

我在学校出了一节公开课,下面是我的教学反思。

教学回顾:

一:引入新课。提问三角形内角和,正方形和长方形的内角和是多少?那任意一四边形内角和都是360度吗?小组讨论交流证明任意四边形内角和都是360度的方法。学生分析有度量法、剪拼法、切割法,做辅助线。其中把四边形切割成两个三角形的方法最为简单。类似的探究其他多边形内角和。

二:完成学案第一部分,用数学归纳法完成填空,总结得出多边形内角和公式。

三:练习。

四:课堂小结。

五:作业。

反思:

这节课本节的教学活动充分发挥学生的主体作用,激发了学生的学习兴趣,使课堂充满生机。在进行四边形内角和定理的教学时,设计完成三个步骤:

(1)通过动手操作,让学生自己通过实验的方法发现四边形内角和定理;

(2)让学生把发现概括成命题;

(3)通过学生讨论命题证明的不同方法。

整节课充满着“自主、合作、探究、交流”的教学理念,营造了思维驰聘的空间,使学生在主动思考探究的过程中自然的获得了新的知识。但由于本节课的.内容多,学习时间较紧张,所以在给学生进行课堂讨论四边形内角和的不同的证明方法这一环节时把握地不够好。由于讨论的问题有难度,讨论时间不够充分。而且我为了能完成这节课的内容没有对四边形内角和的证明方法做以补充(习题课时才加以补充)。

多边形的内角和教学设计(通用23篇)篇六

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的`数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;。

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;。

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

四边形的概念。

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2)。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

多边形的内角和教学设计(通用23篇)篇七

完成《多边形的内角和》教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的'发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

多边形的内角和教学设计(通用23篇)篇八

尊敬的各位领导:

老师大家好!

由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。

《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。

教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。

学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。

有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。

知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。

过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。

教学难点:字母表达式的总结

教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。

学生学具准备四边形、五边形等多边形图片模型,三角板。

教学过程共分为四个环节。

教学过程:

一、创设情境,回顾三角形知识---注重知识的“生长点”

同学们请看这是什么图形?你了解它吗?你能向大家介绍三角形哪些知识?(这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)

我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。

二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。

1、四边形内角和

(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)

有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)

我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)

我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)

(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)

(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”

撕角法,起名字“拼角求和法”。

切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)

归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)

2、五边形内角和

今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。

总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”

列出算式:180x3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)

利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)

现在我们就来看一看其他图形是不是也有这样的规律?

3、六边形、七边形内角和

小组合作,自己完成探究过程,填写表格。

学生汇报,总结画出的线段数和三角形个数之间联系。

三、归纳总结,形成规律---注重字母表达式的推理

通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?

90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)

师:今天你学到了什么?在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗?老师期待你在课后的研究成果。(设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)

以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!

多边形的内角和教学设计(通用23篇)篇九

目标。

重点。

难点。

用具。

方法。

过程。

1、温故知新,揭示课题。

引言之后,先让学生:

(1)试说出三角形以及三角形的边、顶点、角的概念。

(2)如图1:试画出的平分线、bc边上的中线、bc边上的高。

然后,在此基础上,揭示课题,提出思考题:三角形是由三条线段组成的,这里要强调“首尾顺次相接”为什么要加上这个条件?具备什么条件的线段才是三角形的角平分线、三角形的中线、三角形的高。

2、运用反例,揭示内涵。

3、讨论归纳,深化定义。

引导启发学生,归纳讨论探索得到的结果:

定义1三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

强调:三角形的角平分线是一条线段,而角的平分线是一条射线。

定义2三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段。

强调:三角形中线是一条线段。

定义3三角形的高:从三角形的一个顶点向它对边画垂线,顶点和垂足间的线段。

强调:三角形的高是线段,而垂线是直线。

4、符号表示,加深理解。

通过符号的表述,使学生对三角形的角平分线、中线、高的理解得到加深和强化,在记忆上也趋于简化。

5、初步运用,反复辨析。

练习的设计遵循由由浅入深、循序渐进的原则,三个题目,三个层次:

题1三角形的一条高是()。

a.直线b.射线c.垂线。d.垂线段。

题2画钝角三角形的高ae。

题3。

先让学生思考练习,然后师生一起分析纠正,最后教师点拨小结。这环节运用电教手段,以增大教学容量和直观性,提高效率。

6、归纳总结,强化思想。

这节课着重讲了三角形的角平分线、中线和高,在集会理解上述定义时,必须注意到两点:一是三条都是线段;二是钝角三角形与直角三角形的高的画法。

揭示了文字语言、图形语言、符号语言在几何中的作用,要求在学习时熟练三种语言的相互转化。

7、布置作业,题目是:

(1)书面作业p30#2,3 p41#5(做在书上)。

(2)交本作业p41#4。

(3)思考题1:

思考题2:

答案:1.4、7;。

2.能。三角形为等腰三角形。

多边形的内角和教学设计(通用23篇)篇十

完成《多边形的内角和》教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的'发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

将本文的word文档下载到电脑,方便收藏和打印。

多边形的内角和教学设计(通用23篇)篇十一

《探索多边形的内角和》一课终于上完了,然而对这一课的思考才刚刚开始,正如周梦莉校长所说,我们的目标不是这一课本身,而是对于这一课的研究给我们数学教学的一点启发。

有幸与实验小学赵丽老师同时选中《多边形的内角和》这一课,但我们从不同角度不同方式对它进行了解读。20世纪90年代,因为农村小学学生人数的急剧减少,我们学校在课堂上尝试性的进行了分层异步教学,在同一节课中,根据学生认知水平差异,把学生分成a,b两组,在组内又依托知识水平相近原则,把3,4名学生分为一个小组,通常采用合——分——合的模式进行教学,即,当a组同学教学时,b组自学,反之亦然,经过与普通班的对比研究,发现复式班学生在学习效果上有着明显的成效。基于这一基础,我采用分层的模式来进行多边形的内角和的教学,这一尝试,让我对自己的.数学教学有了如下反思:

1,以经验为基础,让学生得到不同的发展。

基于学生的认知经验及活动经验,对学生进行分组,以期达到不同的学生在数学上得到不同程度的发展的目标,学习能力较强的同学要能吃饱,学习能力较弱的同学要在原有基础上有所进步。在实际教学中,对于a组和b组的学生,除了在教学形式上有所区别外,a组教学为主,b组自学为主,我在教学时间的分配上对ab组并没有显着区分,在以后的尝试探索中,我应对a组加以更细致的教学指导,对b组更大胆的放手,让学生上台说,做,教,减少b组的教学时间。

2,勇于放手,培养学生自学的能力。

在一开始设计b组的学习单时,即使b组同学学习能力较强,但出于对学生的担忧,担心学生想不到用分一分的方法,在学习单上,我引导学生,多边形能够分成几个三角形,内角和怎么算。而周校长建议我,是否能给学生更多的空间,把“小问题”变为“大问题”,直接提问学生,多边形的内角和是多少,让学生去尝试探索各种方法,而不仅局限于转化为三角形内角和的方法。在后来的实际教学中,采用了“大问题”的提问方式,我惊喜的发现,学生的探究自学能力比我预想的出色许多。

3,细节入手,培养学生良好习惯。

小学数学良好习惯的培养不仅对学生自身的数学学习有所裨益,对课堂教效果的影响更是尤为明显。在分层教学的模式中,为避免ab组互相间的干扰,必须在课堂上对每组学生提出明确的要求,课前乃至平时都要对学生的学习习惯进行培养,这样才能让我们的数学老师对课堂全局的把握更加深刻,才能够让数学课堂井然有序,数学教学效果得到最大程度的保证。

“授人以鱼,不如授人以渔。”我们的数学分层教学不光是为了学生掌握某一定的知识,而是让学生在不同的学习方式中不断感悟体会,寻找适合自己的学习方法,最终以得到不同程度的发展。

文档为doc格式。

多边形的内角和教学设计(通用23篇)篇十二

【知识与技能】初步掌握多边形内角和与外角和,进一步了解转化的数学思想。

【教学重点】多边形内角和外角和的探索和应用。【教学难点】转化数学思想方法的渗透。

第一环节创设现实情境,提出问题,引入新课。

1.多媒体展示八卦图,看到这幅图,你想到什么数学知识。2.回顾三角形内角和的探索方法。

第二环节实验探究。

1、提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究.活动一:利用四边形探索四边形内角和要求:先独立思考再小组合作交流完成.)(师巡视,了解学生探索进程并适当点拨.)(生思考后交流,把不同的方案在纸上完成.)。

……(组间交流,教师课件展示几种方法)。

教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

2、活动二:探索五边形、六边形、七边形、八边形的内角和。(要求:独立思考,自主完成.)。

3、探索n边形内角和,并试着说明理由。

4、学会了求多边形的内角和你还想学些什么知识?你准备如何求多边形的外角和?

多边形的内角和教学设计(通用23篇)篇十三

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学重点】多边形内角和及外角和定理

【教学难点】转化的数学思维方法

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形的内角和教学设计(通用23篇)篇十四

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】。

【数学思考】。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

【教学难点】探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1.教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2.学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

活动3:

尝试完成第五列n边形的探究。

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是边形.

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形.

(3)多边形的内角和随着边数的增加而,边数增加一条时它的内角和增加度。

3、环节三:例题讲解,知识巩固。

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华。

(1)智慧大比拼。

内容:p87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究。

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博。

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果。

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升。

(1)习题7.3第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

多边形的内角和教学设计(通用23篇)篇十五

4、培养学生合作、表达等能力情感。

教学重点与难点:多边形内角和与外角和特点是重点。

利用化归思想归纳多边形内角和与外角和特点是难点。

教学过程:

一、创设情境。

师出示一个三角形,问:这是什么图形?它是怎样定义的?

生:三条线段首尾顺次连接而成的图形。

师:以次类推,你能告诉我什么样的图形叫做四边形?五边形?……n边形呢?

这些图形我们都叫做多边形。

师:屏幕上的这一类多边形我们称为凸多边形,还有一类如:

我们叫做凹多边形,不在我们今天的研究范围之内。

二、探究新知。

1、 确立研究范围。

生1:它的角。

师:那么今天我们不妨先来研究一下多边形的角。(出示课题:多边形的内角和与外角和)。

多边形的内角和教学设计(通用23篇)篇十六

其次注重让学生在学习活动中领悟数学思想方法。数学的思想方法比有限的数学知识更为重要。学生在探索多边形内角和的过程中先把多边形转化成三角形.进而求出内角和,这体现了由未知转化为已知的思想。特别是在课堂教学中适时的利用问题加以引导,使学生领会数学思想方法,真正理解和掌握数学的知识、技能,增强空间观念及数学思考能力培养,并获得数学活动经验。同时,恰当的使用课件扩大了课堂容量,使课堂教学的深度和广度都有所提高。同时也加大了练习量,有助于学生知识可巩固和提高。

整节课学生的情绪饱满,思维活跃,在教师适当的引导下,学生能够合作交流和自主探究,成功的探索出了多边形的.内角和公式,较好的完成了本节课的教学目标。

不足之处:

1.本节课给学生提供的探究思考与交流的时间比较充足,但展示交流的机会不够充分,并且个别学生没有很好的融入课堂,游离于课本之外。

2.本节课学生小组活动的准备、具体实施、归纳交流、评价等环节设计不够完善。

3、练习不够多样化。

多边形的内角和教学设计(通用23篇)篇十七

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1 已知:如图,直线 ,垂足为b, 直线 , 垂足为c.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

练习:

1.课本124页3题.

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业: 课本130页 2、3、4题.

多边形的内角和教学设计(通用23篇)篇十八

教学目标 。

知识技能。

通过探究,归纳出   。

数学思考。

1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、 通过把多边形转化成三角形体会转化思想在几何中的应用,同时。

时让学生体会从特殊到一般的认识问题的方法。

3、 通过探索多边形内角和公式,让学生逐步从实验几何过度到。

论证几何。

解决问题。

通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。

情感态度。

通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。

重点。

难点。

在探索时,如何把多边形转化成三角形。

知识联系。

多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。

知识背景。

对多边形在生活中有所认识。

学习兴趣。

通过探究过程更能激发学生学习的兴趣。

教学工具。

三角板和几何画板。

教学流程设计。

活动流程图。

活动内容和目的。

活动一,教师和学生任意画几个多边形,用量角器测其内角和。

活动四、探索任意公式。

活动六、小结和布置作业 。

通过分组测量,得出这几个。

通过用不同方法分割四边形为三角形,探索四边形的内角和。

通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力。

通过画正八边形体会和应用。

梳理所学知识,达到巩固发展和提高的目的。

教学过程 设计。

问题与情景。

师生行为。

设计意图。

设计情景:什么是正多边形?

正八边形有什么特点?

你会画边长为3cm的正八边形吗?

学生思考并回答问题。

学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。

活动1、

在练习本画出任意四边形,五边星,六边形,七边形。

通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想。

活动2(重点)(难点)。

学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。

通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。

通过分割及推理,进一步培养学生的解决问题和推理的能力。

活动4、探索任意。

把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。

活动5、画一个边长为3cm的八边形。

让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示。

活动6、小结和布置作业 。

师生共同回顾本节所学过的内容。

多边形的内角和教学设计(通用23篇)篇十九

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

文档为doc格式。

多边形的内角和教学设计(通用23篇)篇二十

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

教学重点:多边形的内角和公式

教学难点:多边形内角和公式

讲解法、练习法、分小组讨论法

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

多边形的内角和教学设计(通用23篇)篇二十一

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

二,学生情况。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

三,教学目标及重点,难点的确定。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】转化的数学思维方法。

四,教法和学法。

本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的'好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

五,教学过程设计。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

多边形的内角和教学设计(通用23篇)篇二十二

各位领导,各位老师:

    大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】转化的数学思维方法。

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

"木工师傅可以用边角余料铺地板的原因是什么"这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理。

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形的内角和教学设计(通用23篇)篇二十三

设计理念:。

一教材分析:。

从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。

二、学情分析:。

三、教学目标的确定:。

3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。

四、重难点的确立:。

既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。

猜你喜欢 网友关注 本周热点 精品推荐
合同协议是一种具有法律效力的书面文件,用于约定和规范各方在特定事务中的权利和义务,它能够确保交易的合法性和可靠性。现在是时候起草一份合同协议了吧?合同协议对于保
优秀作文是指在内容和结构上都能够准确表达作者的观点,并且具备清晰的逻辑关系和精彩的文采的一种写作杰作,它能够给读者带来启发和思考,让人感受到作者的深度思考和丰富
无论是个人还是企业,签署合同协议都是规范交易行为、保护自身权益的必要举措。查阅合同协议的范文,可以帮助我们了解行业惯例和最佳实践,避免犯一些常见的错误。
通过撰写述职报告,我们可以对自己的工作进行一次全面的评估,发现不足之处并设定下一步的工作目标。这是我第一次写述职报告,不太熟悉写作规范,请大家多多包涵。
致辞的功效在于准确传达信息、引导听众情感、赢得听众信任。以下是小编为大家收集的致辞范文,仅供参考,大家一起来看看吧。大家上午好!非常荣幸与各位共同见证世界·绿森
总结的过程可以激发我们的思考能力,提高我们的逻辑思维能力。下面是一些写作精品总结范文,希望对大家起到借鉴和启发的作用。本人自入学以来,一直遵守学校的各项规章制度
承租人可以通过租赁合同来明确自己的权益和责任,保证在租赁期间内的合法权益。接下来是一些租赁合同的参考文件,供大家在签订合同时参考使用。甲方:乙方:甲方有冷库位于
通过月工作总结,我们可以对自己的工作表现进行评估,找出优点和不足,为以后的工作提供参考。小编整理了一些精选的月工作总结范文,供大家参考和学习。。在经济不断发展,
出纳是一个重要的岗位,主要负责公司的财务管理和现金流的统筹。在这些范文中,可以看到出纳在处理账务的过程中需要注意的问题和解决方法。时光荏苒,岁月如梭。20xx年
通过教师工作总结,可以全面了解教师的工作情况,发现问题并提出改进措施。以下是小编为大家收集的教师工作总结范文,希望能给大家一些启发和参考。本学期我担任高三(1、
申请书还需要经过反复修改和润色,以确保语言和内容的完美。这些申请书范文涵盖了不同领域的申请,如求职、升学、奖学金、项目等,有助于了解不同申请书的写作特点和技巧。
教案中的教学方法应该多样化,适应小班学生的不同学习需求。希望这些小班教案范文能够给您的教学工作带来一些新的启示和帮助。1、尝试选用各种塑料瓶盖拓印圆圈。2、激发
军训心得体会能让我们更好地了解军队的严谨和纪律,增强我们的责任感和使命感。以下是小编为大家收集的军训心得体会范文,供大家参考和学习。400字。作文。经过了初一的
申请书不仅要具备良好的结构和逻辑,还需要体现出我对目标的深入了解。每篇范文都有其独特之处,希望能给大家提供一些创作灵感。你好!根据《中华人民共和国劳动合同法》的
心得体会是我们对某一经验或事件的深入思考和总结,是我们心灵成长的见证和记录。以下是一些关于心得体会的经典范文,供大家参考和学习。前言:《道德经》是中国文化的瑰宝
在年度总结中,我们可以将过去一年的工作、学习和生活经历进行整理和分类,从而更好地理解自己的所思所想。在撰写年度总结时,可以参考下文中的范文,学习一些写作的技巧和
一份出色的申请书可以提高申请者的竞争力,吸引招生委员会或用人单位的注意。通过借鉴这些优秀范文,我们可以更好地了解申请书的要点和写作技巧,提高自己的申请书写作水平
作文是我们表达思想、抒发情感的一种方式,通过写作可以更好地展示自己的才华和思维能力。以下是小编为大家收集的优秀作文范文,供大家参考学习。五年级了,又要换社团了,
综合素质包括知识、能力和思维等多个方面,它是一个人综合发展的重要指标。以下是小编为大家整理的语文学习方法和技巧,希望大家可以通过这些方法和技巧,提高语文学习的效
工作计划书是我们为了达成工作目标而进行的必要准备,不可忽视。希望以下提供的工作计划书范文能够帮助大家更好地理解和掌握工作计划书的写作技巧。德育导师工作在我校己开
优秀作文是作者用心思考和表达的结晶,它能够给人以启示和思考。下面是一些优秀作文的精彩片段,让我们一起来欣赏和品味。1、是你的温柔把心灵的伤痛抚摸,是你的敬业把身
通过月工作总结,我们可以更好地了解自己的工作能力和潜力,为未来的发展做好准备。接下来是一些值得借鉴的月工作总结例子,希望能够给大家提供一些写作思路。
制定实施方案的过程可以帮助我们思考问题和解决问题的能力得到提升。以下是一些实施方案中需要注意的法律和道德问题,需要遵守相关规定。。为全面贯彻落实党的十九大精神,
开学典礼是一个庄重而又令人期待的时刻,标志着新一学年的开始和学习生活的正式起航。下面是小编整理的开学典礼总结范文,希望能够为大家提供一些有价值的参考。
申请书要体现出自己的特长与优势,塑造积极向上的形象。在阅读这些申请书范文时,可以对比自己的写作,发现不足之处并加以改进。专业2011届本科毕业生lm,于2010
读书心得是我们与书中作者对话的过程,通过总结我们可以更好地理解和吸收书中的知识。以下是一些读书心得的案例,供大家参考,希望能帮助大家更好地写作和总结。
学习心得是对一段时间内学习经历与感悟的总结和反思,通过回顾自己学习的过程和成果,可以帮助我们发现问题、改进学习方法、加深对所学知识的理解。在下面的例文中,我们可
读书心得是一种培养思维能力和提高写作水平的有效方式,在写作过程中我们能思考更深入。以下是一些优秀读书心得的摘录,希望能给大家带来思考和启示。最近,我读了些书,不
租赁市场的发展日益壮大,各种类型的租赁产品层出不穷。3.下面是一些关于租赁的范文案例,供大家参考、学习和借鉴。依照《合同法》《农村土地承包法》等法律、法规的规定
范文范本是指在特定领域内优秀的写作作品,它们具有较高的参考价值。接下来是一些值得一读的范文,可以从中学习到一些写作技巧和方法。我于xx年年进入了xx学校,在这三
通过写读书心得,我们可以与他人分享并获取更多意见和反馈,促进自己的成长和进步。以下是一些读者写的读书心得,值得我们学习和借鉴的地方有很多。快乐的暑假一开始,我就
读后感是对阅读内容的回应和反馈,可以帮助我们加深对作品主题和情节的理解。小编为大家整理了一些经典作品的读后感范文,希望能够给大家在写作时提供一些参考和借鉴。
通过写心得体会,我们可以更好地吸取经验教训,提高自身的能力。请大家阅读下面的心得体会范文,或许会对大家的写作有所启示和帮助。为了让学生更加了解专业知识的核心,理
月工作总结的写作可以参考相关资料和范文,借鉴他人的经验和教训。下面是小编整理的一些优秀月工作总结范文,供大家参考和学习。随着20xx年的结束,20xx年的工作即
通过实习心得体会,我们可以回顾实习期间的工作经历,分析自己的所得和不足。实习心得范文5:实习期间,我意识到了理论与实践的差距,进一步加深了对专业的理解。
保险工作总结可以让我们更好地了解自己的工作风格和方法,从而提高我们的工作效率和质量。以下是小编为大家整理的保险工作总结范文,仅供参考。希望大家可以借鉴其中的经验
对于这段经历,我感受到了自己的进步和成长,总结是对这段经历的呈现和总结。这些范文中所包含的心得体会或许能够给大家带来一些思考和启发。自从我开始接受心态培训以来,
述职报告的目的是为了向上级、同事和团队展示自己的工作进展和贡献。请大家参考以下述职报告范文,了解一些写作技巧和表达方式。尊敬的领导:您好!时光如流星划过,瞬间即
通过学期工作总结,我们可以及时发现并解决学习和工作中的问题,提高效率。学期工作总结是一种艰巨而重要的任务,以下是一些写作技巧供大家参考。本学期我执教的是四年级二
英语在科研领域具有重要地位,许多学术著作和研究成果都是用英语进行交流和发布的。以下是小编为大家收集的英语总结范文,希望能给大家一些启发和参考。尊敬的各位老师、亲
教学工作计划的编写需要教师具备良好的教学理论和实践经验,以确保教学目标的实现和学生的综合素质提高。以下是一些经验丰富的教师所制定的教学工作计划,希望能给大家提供
优秀作文是作者用心灵的火花点燃了文字的火焰,将思想和情感融入其中。下面是一些来自各地学生的优秀作文集锦,它们既有沁人心脾的诗意散文,又有深入人心的社会议论文,涵
优秀作文需要注重细节描写,使文章生动而有趣,能够吸引读者的注意力。这是一些杰出作品的摘录,希望对大家的写作能够起到积极的借鉴和启示。早晨,我爬起床,向客厅走去,
实习心得的写作是对我在实习过程中所经历的种种事物进行思考和总结的过程,有利于提升我在职场中的反思能力和学习能力。以下是一些实习心得的精选,供大家参考和借鉴,希望
心得体会是对自己在学习、工作、生活等方面的感悟和领悟的总结与归纳,它可以帮助我们深化对某一事物的理解,提升自己的思考能力。在这里,我整理了一些值得分享的心得体会
制定教学计划需要教师深入了解学生的背景和学业水平,根据学科特点和课程要求进行综合考虑。下面是小编为大家整理的教学计划范文,希望能对大家编写教学计划有所帮助。
通过写心得体会可以记录下自己的成长历程,留下宝贵的回忆。这是一些来自各个领域的专业人士的心得体会,可以为我们提供更全面和多角度的思考。欢迎来到g20,努力做环保
活动总结是对活动参与者和观众的反馈和意见进行整理和回应的重要途径。【活动总结】这次活动的成功得益于大家的共同努力,我希望能够写一篇总结来表达对大家的感激和赞扬。
写工作心得体会可以帮助我们梳理思路,提高自己的表达能力和沟通能力,进而更好地与同事和上级进行合作和交流。以下是一些成功人士的工作心得体会,希望能够给大家提供一些
服务月是为了传承和发扬中华民族的传统美德,让社区居民更加团结友爱,共同建设美好家园。以下是小编为大家精心挑选的服务月活动照片与视频,希望能够让大家进一步感受到服
幼儿园教案能够帮助教师合理安排教学时间,确保教学过程的连贯性和有效性。为了方便大家编写幼儿园教案,小编整理了一些常用的教案模板,供大家参考使用。我们小班的宝贝们
一篇优秀作文能够引起读者的共鸣和思考,给人留下深刻的印象。以下是一些备受称赞的优秀作文,通过细腻的描写和独特的思考,给人留下了深刻的印象。你们知道菱角吗?我想你
幼儿园教案是教师进行教学准备的重要工具,它可以帮助教师系统地组织教学内容和教学活动。以下是小编为大家收集的优秀幼儿园教案范文,供大家参考和借鉴。各位领导好!我今
范本是我们学习和提高写作能力的一个重要途径,通过分析和模仿范本,我们可以不断提升自己的写作水平。以下是一些值得一读的范文范本,通过阅读和分析这些范文,我们可以学
教学工作计划的制定需要充分考虑学生的学习特点和需求,注重个别化和差异化教学。小编为大家准备了一些经典的教学工作计划范文,希望能够给大家带来灵感。经过一个学期的学
通过学期工作计划的实施,我们可以提高学习和工作效率,实现更好的成绩和更高的价值。看看以下这些学期工作计划的经验总结,或许可以帮助你更好地规划自己的工作和学习。
经验材料是通过对个人或他人经历和经验的概括和总结,可以为我们提供宝贵的学习和借鉴之处。在此,为大家提供一些经过筛选和整理的经验材料,希望能够给大家带来一些启示。
范本的特点是既要具备观点独特和观点明确,同时还要结合实际情况,具有一定的针对性。以下是小编为大家收集整理的总结范文,希望能给大家提供一些建议和思路。
情况汇报可以帮助我们更好地了解现有问题,并提出解决方案和改进措施。以下是一些情况汇报的成功要素和技巧,希望能帮助大家写出更好的情况汇报。20xx年,我镇认真贯彻
心得体会是个人在学习、工作、生活或其他方面的经验总结与感悟。以下是小编为大家准备的一些经典心得体会,希望对大家的写作能够有所帮助。春节放假值班,闲下来阅读了我的
合同协议的主要目的是确保各方都能够履行合同中约定的责任。在起草合同协议时,可以借鉴一些通用的合同示范文本,以确保合同的严谨性和可执行性。甲方:乙方:甲方委托乙方
写心得体会不仅可以让我们加深对于某一经历或事件的理解和认识,还能够为他人提供有益的借鉴和启示。在这里,小编为大家推荐了一些引人思考的心得体会,一起来看看吧。
入团申请书是展示中学生优秀品质和领导潜质的机会,通过书面材料的方式向团组织展示自己的能力和才华。通过阅读入团申请书范文,可以提升中学生对入团申请书的认识和写作能
小班教案旨在培养幼儿的基本技能和学习策略,为他们的学习之路打下坚实的基础。希望以下小编整理的小班教案范文能够对您的教学工作有所帮助。1、萌发幼儿关心他人,愿为好
计划书不仅是一份规划行动的文件,更是我们对于未来的理性思考和规划。请大家参考以下计划书范文,根据自己的实际情况进行创作,并不断完善和提升。下面是计划网工作计划栏
活动方案的编写能帮助我们提前预想到可能出现的问题,并采取相应的措施加以解决。接下来是一些经过实践验证的活动方案,希望对大家能有所启发。节假期在一定程度上对消费者
优秀作文是一种通过文字来记录生活、表达情感和传播思想的方式,它承载着作者的思想和情感。下面是一些优秀作文范文,希望能给大家提供一些参考和借鉴。天上为什么会有云呢
制定活动方案时,我们需要考虑到不同参与者的年龄、性别、兴趣等因素。以下是小编为大家准备的一些优秀活动方案范文,欢迎大家阅读和学习。9月10日――9月19日(10
心得体会是对自己经历和体验的总结,可以让我们更加珍惜和感恩身边的一切。继续往后翻阅,小编为大家收集了一些独特的心得体会,或许能给你一些新的思路和启发。
优秀作文需要经过反复的修改和润色,才能使文章更加出色和精彩。欢迎大家一起来欣赏下面这些优秀作文的精彩表达和独特思考。我的老爸是一位“颜值”与“才华”兼备的人。你
在朗读演讲稿之前,可以多次排练,熟悉内容和节奏,提高表达的流畅性和自信度。请大家跟随小编一起阅读一些精选的演讲稿范文,相信会对大家的写作有所启示。尊敬的老师,亲
预备党员应积极参与社会实践活动,增强社会责任感和奉献精神。接下来,我们一起领略一下一些杰出预备党员的成长故事和经验分享。1、该同志积极参加政治学习活动,按时汇报
行政是实现政府职能的一种方式,包括辖区管理、公共服务等方面。接下来,我们将为大家分享一些行政工作的经验和教训,希望对大家有所帮助。法定代表人:xxx电话:代理人
述职报告是一种对个人工作表现进行总结和概括的一种书面材料。小编整理了一些描述自己工作经验和成果的骄傲瞬间,供大家参考和借鉴,希望能给大家带来一些启示和灵感。
教学工作计划是一份详细规划教师在一段时间内的教学内容、方法和目标的计划。它可以帮助教师更好地组织教学活动,提高教学效果和学生学习成果。教学工作计划是教师职业发展
个人总结可以让我们明确自己的目标和方向,树立正确的学习态度和价值观。接下来,我们将为大家分享一些优秀的个人总结范文,希望能够给大家带来一些新的思考和启发。
优秀作文要注重结构的安排,包括开头引入、主体论述和结尾总结等部分。欣赏优秀作文范文是一个提高自己写作能力的好方法,以下是小编为大家准备的一些精彩范文。
计划书是为了规划和安排未来的工作、学习和生活而编写的一种书面材料,它能够帮助我们更好地实现目标和达成计划。下面是小编为大家整理的一些计划书范文,希望能够对大家的
读后感是读完一本书后,针对其中的内容和触动,进行个人思考和感受的一种文字表达。接下来,请大家一起来欣赏一些脍炙人口的读后感,相信会对大家的写作有所启发。
作为一名员工,我想对自己的工作进行总结和概括,所以需要写一份述职报告。面对写述职报告的困扰?别担心,以下是一些优秀的范文,希望能够帮到你。在刚刚过去的20x年里
优秀的作文不仅需要有深入的思考和独到的见解,还需要用生动的语言和精准的表达来展示出来。小编为大家准备了一些优秀作文的资料,希望能够给大家带来帮助和启示。
心得体会是我们在实践中积累的财富,可以帮助我们更好地应对未来的挑战。这是一篇精彩的心得体会,作者通过真实的经历和深入的思考,给我们带来了很多新的感悟。
一个好的活动方案应该具备清晰明了的活动目标,科学合理的策划,全面有效的实施措施。这些活动方案范文是经过精心设计和实践的,能够为你的活动策划提供一些建议和参考。
开题报告是对研究问题、研究目标及研究方法进行初步设计和确定的一种初步方案。如果你对如何写一份优秀的开题报告感到困惑,以下是一些范文,希望能够帮到你。
在教师总结中,我们可以总结教学方法和策略的有效性,以便在今后的教学中更好地应用。小编为大家整理了一些教师总结的范文,希望能引起大家对教学工作的重视和反思。
教学工作计划的内容应该有一定的弹性和可操作性,以适应不同学生群体的需求。小编为大家整理了一些教学工作计划范文,希望能够给大家提供一些思路和参考。【教学目标】:1
通过情况汇报,我们可以及时了解工作的进展和存在的问题,保持团队的高效运作。这些情况汇报范文涵盖了不同行业和领域,可以满足不同人群的需求。根据《导游人员管理条例》
心得体会的写作过程可以促使我们思考自己的行动和决策是否合理有效,从而有助于自我提升和成长。小编整理了一些优秀的心得体会范文,希望能为大家提供一些有益的启示。
通过社会实践,学生能够将理论知识与实际应用相结合,提高自己的实践能力。下面是社会实践过程中遇到的问题和解决方法,供大家参考借鉴。今年x月x日,我正式走进xx食品
优秀作文应该既有独特的个性,又符合一定的规范和要求,能够给读者留下深刻的印象。为了提高写作水平,不妨阅读一些优秀作家的作品,从中学习他们的独特表达方式和思考方式
施工中需要合理调配人力、物力和机械设备,以保障工程的顺利进行。6.以下是一份详细的施工计划范文,希望能够对你的施工工作有所帮助。公路在国家经济建设和发展的过程中
心得体会可以帮助我们更好地理解他人的思想和观点,增加我们与他人的交流和沟通的能力。以下是小编为大家收集的心得体会范文,供大家参考。这些范文涵盖了不同主题和领域,
运动会是学校一年一度的盛事,也是学生们期待已久的活动。现在请大家阅读以下运动会总结,相信可以为大家提供一些写作思路和技巧。大会主持:zz(解说词)。1、各校区师
年终总结是对整个一年的工作和成果进行概括和总结的重要文书。在下面,小编为大家精选了几篇优秀的年终总结范文,希望对大家的写作能有所启发。4月13日至14日,我参加
通过月工作总结,我们能够发现自己的优点和亮点,进一步发挥自己的优势,提升自己的工作能力和素质。以下是小编为大家收集的月工作总结范文,供大家参考。通过这些范文,可
读书心得是读者对所读书籍的感悟和理解的表达,它不仅可以记录下自己的思考过程,还可以帮助他人更好地了解这本书。以下是一些精选的读书心得范文,希望能给大家写作提供一
在各种场合,我们都需要进行自我介绍,这是一个展示自我形象和建立人际关系的重要环节。如果需要自我介绍的模板或写作技巧,可以参考以下范文。您好,我叫xx-x,来自广
编制活动方案需要团队协作,各个环节的协调合作是成功的关键。以下是小编为大家收集的成功案例,希望能给大家带来一些灵感和启发。共聚祥云闹元宵。元宵节是中华民族传统的
一份好的策划方案应当具备详实的内容、明确的目标、合理的安排和科学的依据,能够在实施过程中为团队提供明确的指导和支持。以下是小编为大家整理的一些优秀策划方案范文,
预备党员应当严格遵守党的纪律,维护党的团结和集体荣誉。大学生李XX:在校期间,我担任班级团支书,组织开展各种志愿者活动,发挥自己的积极作用。**x同学,是我们班