教学工作总结需要注意客观真实地评价自己的工作成果和不足之处。下面是一些成功教师的教学工作总结,为我们提供了宝贵的经验和启示。
数学代数教学总结(精选16篇)篇一
本学期完成了普通高中课程标准实验教科书《数学》选修2—1,选修2—2内容的教学工作及培优扶差工作。总结如下:
兴趣是求知的向导,热爱是最好的老师。培养学习兴趣,除了利用数学教材本身的趣味性和实用性外,更重要的是要不断地、自觉地研究与数学相关的各种问题,在研究中培养学习数学的兴趣,使自己真正地喜欢这门课程。只要在平日的学习中积极参与课堂,认真思考,积极发言,那么学习数学的兴趣就会更浓,从而轻松有趣地学好数学。
要想学好数学,必须养成良好的学习习惯:在学习中除了要眼、脑、手并用,勤学、善思、多问之外,还要在课前做好预习,把握重点;课上认真听讲,拓展思维;课后全面复习,巩固提升;独立完成作业、检验学习效果。这四步是每位同学都应养成的良好习惯,并且需要持之以恒。
1、认真备课。本学期,我在备课时不仅认真钻研教材、课标,还认真研读不同版本的教材及各种相关的试题,并根据教学内容和学生的具体情况,精心设计每一堂课的教学过程,提前撰写详细完整的课时教案。课前,再根据学生的学习情况及自己的一些灵感,认真地进行二次备课。
2、认真上课。为了提高课堂教学的实效性,体现新的育人理念,把“新课标”教学目标真正落实到课堂教学之中。课堂上不仅注重调动学生的积极性,强化他们探究合作意识,以人为本,精讲多练,让学生在生活中感知数学、学习数学,运用数学;在探究合作中动手操作、掌握方法、体验成功等。还鼓励学生大胆质疑,注重每一个层次的学生学习需求和学习能力。从而,把课堂还给了学生,使学生成为学习的主人。课后及时分析上课得失,写上课后小记,以便知识的弥补和信息的积累。
3、认真批改作业。作业要做到有布置,有检查,有针对性,有层次性。为了做到这点,我常常从学生自己购买的教学辅助资料中去搜集资料,对各种资料进行筛选,力求每一次练习都起到最大的效果。对于“边缘生”布置符合他们实际水平的题,做出不同的要求。对学生的作业批改及时、认真、分析并记录学生的作业情况,将他们在作业过程中出现的问题做出分类总结,进行透彻的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
1、分层教学,做好课后辅导工作。在数学课堂教学中,如何面对学习水平参差不齐的学生,促使全体学生获得良好发展,落实素质教育目标,这是当前学校课堂教学改革面临的一个突出问题。为此,在这学期的教学中,我特别注重分层教学,在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。
具体做法是根据学生的学习水平将全班学生分为高、中、低三个层次,对低层学生辅导主要是调动非智力因素,培养师生和谐感情,激发学习兴趣,指导学习方法,面批部分作业,利用课间或中午休息时间进行个别辅导,力求做到重点突出,习题简单、基础;对于中层学生上课多提问,课后多督促,多检查;对于高层学生鼓励拔尖,主要培养创造性思维与灵活应变能力。
2、实施“有疑教学”。课堂上教师应设计一系列适合学生程度的问题串,引导自己的学生有所追求,还要引导学生对所学内容进行反思。反思与总结相结合,强调:(1)概括。对知识的归纳和概括。(2)思想。对课堂上所用数学思想的回顾。(3)展望。从课上所学知识出发,进行发散思考。
1、把学生当成学习的主人。教学中,教师应充分挖掘学生的潜能,认识学生学习的动力与兴趣是密不可分的,处处激发起学习兴趣,给学生留下足够的时间和空间,让学生在活动中探索,寻找结论,产生成功感。课堂上,教师要引导学生独立思考,并在此基础上进行合作与交流,努力实现师生的互动;教师还要实施“差异教学”,使人人获得必需的数学,不同的人在数学上得到不同的发展,同时,应该鼓励与提倡学生解决问题策略的多样化。
2、根据各章特点开展数学建模、研究性学习,培养学生的数学应用能力。
3、对不同的章节、不同的学生可以设计不同的课型,比如有的可以用讨论形式进行,有的课可以让学生借助现代信息技术自主探索,有的课可以设计为学生自学辅导课等等。
4、采用有效教学模式进行教学,除了良好的学习习惯之外,有效的学习方法是必不可少的:要注意知识、规律、方法、技巧的总结;注意题型的归类和比较;注意错题的积累和总结;加强一题多解和多题一解的训练;做题时要选择好题、精题和典型题,切不可陷入题海。平时还要多注意试卷的整理和归类,以备复习时重点突出。增加学生的练习时间、提高其解题的速度和能力。同时做好培优扶差工作,并取得了较好的成效。
做好数学题需要好的解题方法,学好数学课则需要好的思想方法。蕴藏在数学中的学科思想,是指导数学学习的原则,如数形结合的思想方法、归纳推理的思想方法等。因此我们要善于总结,养成用正确的数学思想方法指导解题的习惯。
美国心理学家波斯纳提出过一个教师成长公式:成长=经验+反思,因此,在教学工作中,我总是把自己的思想、感受、成功、失败真实的记录下来,并通过个人教学论坛与许多同行进行了交流,使我的业务有了较大的提高。本学期在常规教学工作比较繁重的情况下,积极参加听课评课等教学研讨活动。
一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动力。在以后的工作中,我将一如既往地勤勉,务实地工作,将再接再厉,争取把工作做得更加扎实有效,让各级领导放心,让家长满意,让社会肯定,让学生喜欢。
数学代数教学总结(精选16篇)篇二
又送走了一届学生,这应该是作为一名教师感到高兴的事,一群雏鹰终于长大,要脱离小学老师的庇护,飞向更为广阔的学习天地,可我的心里却始终高兴不起来。有朝夕相处将要变成离别的愁绪,但更多的是深深的遗憾。我为自己没能给这群学生带来更大的进步而遗憾,为自己的心有余而力不足而遗憾。白岩松有一本书的名字叫做“痛并快乐着”,套用他的话我现在的心情是“累并痛着”。
不管怎样,过去已经过去,我只希望自己能够在总结过去的过程中能够成长和进步。
在平时的教学工作中,我做到了:
(一)认真备课。备课时,不但备学生,而且备教材、备教法。根据教学内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都做了详细的记录,既突出了本节课的难点,又突破了本节课的重点。课后及时回顾、反思写下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑。
(二)注重课堂教学的师生之间学生之间交往互动,共同发展,增强上课技能,提高教学质量。在课堂上我特别注意调动学生的积极性,加强师生交流,充分体现学生学得容易,学得轻松,觉得愉快,注意精神,培养学生多动口动手动脑的能力。本学期我把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程。
(三)创新评价,激励促进学生全面发展。对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。
(四)认真批改作业。对学生的作业批改及时,认真分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行透切的讲评,并针对有关情况及时改进教学方法,做到有的放矢。
(五)做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。本年级49名学生中,学习中下者将近占一半,所以“抓差补缺”工作认真尤为重要。本学期,我除了在课堂上多照顾他们外,课后还给他们“开小灶”。首先,我通过和他们主动谈心,了解了他们家庭状况、经济基础、邻里关系等,找出了其中的原因,并从心理上疏导他们,拉近了我们师生之间的距离,使他们建立了自信心;其次,对他们进行了辅导。对于他们遗漏的知识,我主动为他们弥补,对于新学内容,我耐心为他们讲解,并让他们每天为自己制定一个目标,同时我还对他们的点滴进步及时给予鼓励表扬。
(一)总体情况
通过这次检测发现这些学生在数学学习上两级分化现象较为严重,学生计算的正确率普遍不高,审题等学习习惯还有待于进一步的加强,部分学生基础知识掌握不够牢固。
(二)问题分析及解决方法
从本次检测中,我发现学生在学习数学上的主要问题是:
1、有些基础知识的理解不够到位。好多学生对知识的理解是一知半解的,没能从本质上理解它,自然也就不会运用,尤其是稍作变化,就更不知如何是好。
所以,在平时的教学中我应把加强对知识的理解做为重点,应给学生足够的探索的空间和时间,应注重学生在学习知识的体验、感悟。不应该把大量做题作为提高学生学习效果的途径,尤其是毕业前的复习,这样做是本末倒置,缘木求鱼。
2、数学学习中的重点及难点问题没有得到有效的.解决。每一册教材的教学内容,对于学生来说,都有简单一些和难度较大的内容,而对于难度较大的内容,没有给足充分的时间进行解决。
所以,就像吴正宪老师说的,在教学中教师要懂得做加法和减法。把对学生来说,学习相对容易的内容做减法,有难度的内容做加法;把对后续学习影响不大的内容做减法,把对后续内容影响深远的做加法;把学生掌握牢固的内容做减法,把学生易错、易混淆的内容做加法。这样才能够真正解决学生学习中的问题。尤其是要利用好学生在学习中的错误资源。
3、有些数学学习习惯不好。对于小学生来说,认真倾听的习惯,积极思考、发言的习惯,认真完成作业的习惯,认真审题的习惯,认真计算的习惯,认真检查的习惯都很重要。通过这次检测,我发现本班学生尤其需要培养认真倾听的习惯,认真审题的习惯,认真计算的习惯,认真检查的习惯。
这些习惯的培养都要靠平时的教学来完成,所以,我打算在以后的教学中对学生需要的各种学习习惯积极培养,不断要求,加强考核、评比,促使学生养成良好的学习习惯。
4、分层教学实施没有取得明显的效果。本学期进行了分层教学,主要手段是根据学生的学习反馈,针对每一个学生的知识漏洞有针对性地辅导和练习,但辅导和练习的时间没能保证好,导致效果不够明显。
所以,在今后的教学中我打算不仅依靠老师,也可以依靠学习小组,来对学生进行有针对性地的辅导,这样就可以保证好时间了。还可以将分层作业具体完善、实施起来,使每一个学生都能有所收获。
数学代数教学总结(精选16篇)篇三
本学期我的数学教学工作即将接近尾声,回顾一下自己一学期的数学教学工作实践,感觉既漫长又短暂。整册数学书六个章节教学。在教学中,我本着将理论与实践,将课内与课外紧紧地融合在一起,充分调动学生的积极性,使孩子们在数学学习中既学到了知识,又体验到了快乐。对于我个人而言,我也时刻本着一名教师特有的工作热情,全身心地投入到教学中,从而圆满的完成教学任务。现将教学方面的体会和工作总结如下:
一、积极听课,认真备课,善于反思。
听课,不仅开阔了思路,也为备课过程积累了丰富的素材。各种鲜活生动的事例,各种教学方法、模式的展示,微小细节之处的精彩处理,使我在丰富课堂教学的同时,也改变了学生对学习感到枯燥、单调、脱离实际的成见。关于认真备课,本册书中的每一课时每一个教学环节,我都是精心地分析、准备,从而再到课堂上给学生来讲授。在我的意识里,我觉得只要是自己能努力去做好的,就一定要竭尽全力地做,能够在课堂中让孩子们获取更多的知识,是作为一名教师最大的快乐与成就。
二、创设平等活跃的课堂氛围。
教师在新课程中最大的角色是变化,将不再是知识的传授者和管理者,更是学生发展的促进者和引导者。在教学中,结合本班的特点,我在课堂上创设丰富的教学情境,如讲故事,说新闻,玩智力游戏等,我努力引导学生从传统的接受学习转变为探究学习,让学生养成良好的学习习惯,掌握学习的策略和发展能力,创设丰富的教学情境,激发学生的学习动机和学习兴趣,充分调动学生的学习积极性。对答的好的学生我会马上表扬,有错的,也会及时鼓励。使学生从中受到感化和熏陶,从而激发出学习的无限热情和学习愿望,使他们全力以赴地投入学习,提高对学习活动的积极性。
三、狠抓基础知识和基本技能。
由于七年级是小升初的转折年级,如果处理不好,学生的能力很难提升。我班学生知识基础参差不齐,为了夯实学生基础知识和基本技能,我根据学生的平时表现把学生分为不同的小组,因材施教,不断提高学生的知识水平。比如,根据学生的实际情况,把学习小组成员分成1号、2号、3号、4号。给每个不同号数的学生回答问题时不同的积分奖励,激发后进生的学习积极性和激情。又如,在学习生字方面,为了让学生更加深刻和注意容易出现错误的地方,让学生在黑板上板书过程,小组之间互相寻找错误,从常见的计算错误到步骤合理性再到错别字的问题上,互相找错互相纠正。
数学代数教学总结(精选16篇)篇四
本学期我担任一年级(2)班的数学,本班有孩子xx人,女孩xx人,男孩xx人。回顾这学期工作中的点点滴滴,收获不少。从班级的实际出发鼓励孩子们自立、自理,使孩子们在活动中愉快、自主地接受新的知识,从不同的角度促进孩子们的发展。先将本学期一年级数学教学总结如下:
我在教孩子们学习数的组成及加减的时候,我使用了大量的教具帮助我教学。如我在学习10的组成及加减时,我设计的主题是果园,孩子们看到图片内容很快提出:树上有5个苹果,树下有5个苹果,一共有几个苹果?还有的孩子问:树上原来有10个苹果,掉了5个,树上还剩几个苹果?可见形象直观的图片教具,是帮助孩子提问和学习的最好帮手。
在教学中,我不仅让孩子们学会回答老师提出的问题,过渡到能自己学会提问,在老师提供的环境中,学会提出一定性有价值的问题。在活动中,一些学生不懂得表达心中的疑惑,也就是说不会提问题。在教学过程中,就更应该关注他们,想他们所想,探明孩子们好奇在哪里,疑惑在哪里,然后引导孩子们把心中的疑惑用问题的形式表达出来,把好奇心转化为一个个问题,这样才不会使孩子们的好奇心稍纵即逝,才能引起孩子进一步探究的兴趣。这种从好奇到提出问题的养成,对孩子来说将会受益终身。所以我在进行每一次数学活动时,我都要准备丰富多彩的教具,为孩子创设有趣的问题情境,用色彩和图片去刺激孩子的视觉感官,来激发孩子学习的兴趣。
特别是极个别差生,我总不放弃对他们的要求,总是耐心辅导,手把手的教,并及时与家长取得联系,教会家长的辅导方法,在与家长共同努力下,效果不错哦。总之,在课堂教学中,教师应在孩子力所能及的范围内,让孩子多动、多说、多看、多问、多表现、多思考,尽量多给孩子一点思考的时间和活动的余地,把提问的权利还给孩子!
由于一年级的小朋友年纪小,还不知道学习的重要性,没有养成自觉学习的良好习惯。还有个别孩子10以内的加减法还没有掌握好。
1.培养学生养成自觉学习的良好习惯。
2.与家长或监护人密切联系,随时掌握学生的学习和生活情况。
数学代数教学总结(精选16篇)篇五
总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以给我们下一阶段的学习和工作生活做指导,我想我们需要写一份总结了吧。那么总结要注意有什么内容呢?以下是小编为大家整理的数学教学总结,欢迎大家借鉴与参考,希望对大家有所帮助。
一学期来,本人热爱本职工作,认真学习新的教育理论,广泛涉猎各种知识,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高,从而不断提高自己的教学水平和思想觉悟,为了下一学年的教育工作做的更好,下面是本人的本学期的教学经验及教训。
要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:1、课前准备:备好课。
2、认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
3、了解学生原有的知识技能的'质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
4、考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
5、课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
6、要提高教学质量,还要做好课后辅导工作,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头,或帮助整理衣服。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。
7、积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。
8、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。
数学代数教学总结(精选16篇)篇六
三年来,我自拟课题,尝试计算机技术与数学学科的整合,计算机技术与数学教学。该课题分两个阶段进行。
在常规教学中,运用多媒体技术制作课件改善数学课堂教学。
电脑多媒体技术是现代教育技术的一种,运用这一技术制作的课件图文并茂,具有信息量大、动态感强等传统教学技术无法具有的优点,特别适用有关几何图形和函数图像知识的教学。在常规教学中,由于受客观条件的限制,有些概念的理解,用常规的教学手段难以达到一定的效果。而用多媒体技术制作的课件能给学生深刻的印象,使学生获得直观的感知,从而激发学生的学习兴趣和积极性,提高学习效果。
过去,学生在初学平面几何的时候常有畏难情绪。这与学生的思维方式、思维能力有关,也与传统教材的编排有关。现在的教材引进了“图形运动”,通过平行线、等腰三角形、圆和平行四边形中的一些比较直观的基础知识,引进了平移、翻折、旋转和中心对称等一系列图形运动,使原来那些呆板、枯燥的图形变活了。通过这些直观的图形运动,初学平面几何的同学加深了理解,初步有了用运动的观点来处理数学问题的思维。教师也能在教学过程中逐步培养学生形成辩证惟物主义的观点。
目前,多媒体教学尚处在尝试阶段,教学软件还存在不同程度的缺陷,还不能做到“想怎么做就怎么做”。此外,我们对这些软件的了解还很不深透,还有许多地方需要我们去琢磨,去研究,去尝试。惟此,才能完善我们的教学,才能让现代化的教学手段发挥更大的作用。
学生在自主学习中利用计算机进行探索性学习。
现在是知识爆炸的时代,学校传授的知识极其有限,学生在学校学到的数学知识能在将来工作中直接应用的微乎其微,起作用的只是教师传授的思想方法和学习方法,教育论文《计算机技术与数学教学》。因此,学校的数学教学应该教会学生终身受益的学习方法,培养学生的创新意识和可持续发展能力,使他们在未来的竞争中立于不败之地。
现代教学技术进课堂,强有力地冲击了传统的数学教学。许多教师在努力尝试,多种软件被应用于公开课、研究课,甚至于家常课,提高了课堂教学的效果,发挥了多媒体技术的作用。可是,一个无法回避的问题摆在我们面前:尽管这些现代化技术的作用很大,有助于学生思维的发展,但它们还仍然只是老师手中的工具,而不是学生主动学习的武器。如何使计算机技术成为学生手中的利器,成为学生开展自主学习和探索解决问题时的工具,才是我们研究的目的。
用几何画板介入数学常规教学特别是几何的常规教学,是目前数学课堂教学中所鲜见的。在解析几何学习的全过程中的实验,历时半个多学期。学生在教师指导下利用几何画板和计算机网络来开展探索性学习,是一种不同于传统的课堂教学。
数学代数教学总结(精选16篇)篇七
线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的.具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
数学代数教学总结(精选16篇)篇八
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,大家在第一轮全面复习的时候同时就要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。那么,考研数学复习中的“刀刃”都有哪些呢?考研辅导专家认为,高等数学是考研数学的重中之重,所以大家在备考高等数学时要特别注意。
地毯式的反复练习。
大家在复习过程中,要对重要定理、重要的公式或者重要的结论应该经常翻一翻,已经有印象的,反复练习可以加深印象,使自己保持一个良好的状态。参加硕士研究生入学考试这种选拔性的考试跟体育竞技有些类似,想要保持一个良好的状态,必须把要考的内容在脑海里面反复强调。很多同学说把代数复习完以后,高等数学忘了,复习这个忘了那个,这个很正常,不要因为这个原因,就认为考不好数学,每个正常的人都会有这样的`感觉。考研辅导专家提醒考生,要解决这个困难,只有通过反复复习,学习英语亦是如此,通过反复使自己能够随时调用数学知识。记忆的关键就在于重复,如果大家能够把学习变成一种习惯,那势必会让你的复习锦上添花,也不会对学习产生抵触情绪,这样一来,效率和效果自然会高上无数倍。
数学代数教学总结(精选16篇)篇九
2010年全国硕士研究生入学统一考试于1月9-10日进行,现在已经全部结束了。各位学生经过一年多的努力、拼搏,终于考完了所有的课程。对于考数学的考生来说,更希望了解今年数学试卷的总体特点;而对于很多准备参加2011年考试的学生也希望了解明年数学命题的趋势,现针对线性代数部分的试题进行以下分析。
线性代数一共是5道考题,两个选择题,一个填空题,两个解答题,两个解答题是22分,今年这两道大题主要是计算题,只有数学一21题第二问是证明a是正定矩阵的,而这个证明也是很简单的。因为同学害怕的是线性代数的证明题,今年两个都是计算题,所以从这个角度来说,线性代数的考题并不难。但是相对于09年的线性代数题目来说,今年的线性代数题目比09年的题目个别题目要略微难一些,因为09年的两道大题都是比较常规的计算,一个是具体的非齐次线性方程组的求解和证明线性无关,另一个是求二次型所对应矩阵的特征值,这两个题目都是比较常规的题目,今年的两个大题中,数一、数二、数三都考察了一个带参数线性方程组的求解,这道题涉及到了参数的问题以及非齐次线性方程组解的结构,比09年的具体的非齐次线性方程组的求解稍微灵活一些,对于第二道大题,数一考察的是已知二次型在正交变换x=qy下的标准形以及q的第三列,反求a的问题,这是一个抽象的问题,比09年具体的二次型要稍微有些难度,并且计算量有点大,所以说,从这个角度来说,今年的线性代数题的两道大题应当比09年的线性代数题要略微难一些。从今年出题的情况来看,考得很全面,六章,每一章都考到了,章章都有考的出题点,题目还是有一些灵活性的。
从大纲的角度来看,现在数一、数二、数三的考试大纲几乎完全一样,数一的同学多一个知识点,多一个向量空间,而今年正好在这儿考了一道小的题目,考察了向量空间的维数。线性代数今年这五道题来说,两道解答题,数二、数三完全一样,数一有一道和数二、数三的不一样,只是换了一个出题方法,考的出题点还是同样的。从这几年考试的特点来看,线性代数题考得很基本,而线性代数题本身比较灵活,一道题往往有多种解法,基于这样的情况,作为2011年的考生,如果要准备线性代数的复习的话,还是应该按照考研题的特点,重视基础,把概念搞清楚,把基本的东西搞清楚。像今年数一考的一道题,考的矩阵的秩,这道考题实际上涉及到的两个基本的知识点,一个是矩阵乘积的秩,即r(ab)=r(a),r(ab)=r(b);另一个是矩阵的秩的一个性质,即若a为m*n矩阵,则r(a)=m,r(a)=n,由这两个知识点我们就可以得到相应的结论,而08年数一的一道大题同样考的是矩阵秩的性质,这两道题用到了相同的知识点;同样的,今年数一、数二、数三都涉及到的一道题,已知a为四阶实对称矩阵,,且r(a)=3,求a相似于什么样的对角阵,这道题实际上就是求a的特征值,而02年数三就有一道基本上一模一样的.大题,所以说历年真题在考研复习中起到了一定的作用,在复习中要引起充分的重视。另外,线性代数的题目比较灵活,今年其他几道题也是一样的,出得很灵活。所以这就要求同学们在复习过程当中,在这方面一定要注意,注意知识点之间内部的联系。
以上我们从考试知识点方面对2010年考研数学试题线性代数部分考点进行了分析。从历年的数学考题来看,命题组的专家都是紧紧扣住三基本,“基本概念、基本理论、基本方法”,试卷中基础知识的考查占有相当大的比例,所以对准备2011年考试的考生来说,复习时首先应该注重基本概念、基本原理的理解,弄懂、弄通教材,打一个坚实的数学基础,书本上每一个概念、每一个原理都要理解到位,切不可开始就看复习资料而放弃课本的复习。在第一次的全面复习中,还要扎扎实实的把每个大纲要求的知识点都过一遍,查漏补缺;其次,注重公式的记忆,方法的掌握和应用。在研读教材时要重视习题,不要求每个概念都背下来,但一定要熟习它是如何反映在题目中的;最后,要注意综合。今年解答题主要是考察综合能力,我们这种综合能力不是简单的一个知识点、两个知识点,都是跨章节的,涉及多个知识点的综合题。不管是线性代数还是概率论与数理统计,还是微积分,一定要加强综合、加强训练。你只有一步一个脚印,方法得当,一定能取得好成绩。
将本文的word文档下载到电脑,方便收藏和打印。
数学代数教学总结(精选16篇)篇十
考研阶段大致有依次下面几个阶段:基础阶段、强化阶段、冲刺阶段,前面每个阶段如果走的更好更快,那么将为以后的阶段提供足够空间,反之可能打乱复习进程。越是到后面,考生越是要坚持两条腿走路,即知识点总结和题型总结。也就是要把书由厚读到薄,把知识转化成自己的东西,这样才会越学越轻松。线性代数在考研数学中占有重要地位,必须予以高度重视。和高数与概率统计相比,由于线性代数的学科特点,同学们更应该要注重对知识点的总结。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,同学们必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做总结,希望对同学们复习有帮助。
一行列式。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算。
(1)降阶法。
这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式。
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型。
(1)数字型行列式的计算。
(2)抽象行列式的计算。
(3)含参数的.行列式的计算。
二矩阵。
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。
1重点内容:
(1)矩阵的运算。
(2)伴随矩阵。
(3)可逆矩阵。
(4)初等变换和初等矩阵。
(5)矩阵的秩。
2常见题型:
(1)计算方阵的幂。
(2)与伴随矩阵相关联的命题。
(3)有关初等变换的命题。
(4)有关逆矩阵的计算与证明。
矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。
(5)解矩阵方程。
三向量。
向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1重点内容:
(1)向量的线性表示。
线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
(2)向量组的线性相关性。
向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。
(3)向量组等价。
要注意向量组等价与矩阵等价的区别。
(4)向量组的极大线性无关组和向量组的秩。
(5)向量空间。
2常见题型:
(1)判定向量组的线性相关性。
(2)向量组线性相关性的证明。
(3)判定一个向量能否由一向量组线性表出。
(4)向量组的秩和极大无关组的求法。
(5)有关秩的证明。
(6)有关矩阵与向量组等价的命题。
(7)与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。
1重点内容。
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构。
(2)齐次线性方程组基础解系的求解与证明。
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。
2常见题型。
(1)线性方程组的求解。
(2)方程组解向量的判别及解的性质。
(3)齐次线性方程组的基础解系。
(4)非齐次线性方程组的通解结构。
(5)两个方程组的公共解、同解问题。
五特征值与特征向量。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。
1重点内容。
(1)特征值和特征向量的概念及计算。
(2)方阵的相似对角化。
(3)实对称矩阵的正交相似对角化。
2常见题型。
(1)数值矩阵的特征值和特征向量的求法。
(2)抽象矩阵特征值和特征向量的求法。
(3)判定矩阵的相似对角化。
(4)由特征值或特征向量反求a。
(5)有关实对称矩阵的问题。
六二次型。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
1重点内容:
(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;。
(2)了解二次型的规范形和惯性定理;。
(3)掌握用正交变换并会用配方法化二次型为标准形;。
(4)理解正定二次型和正定矩阵的概念及其判别方法。
2常见题型。
(1)二次型表成矩阵形式。
(2)化二次型为标准形。
(3)二次型正定性的判别。
同学们可以对照以上内容和题型,多问问自己是否已熟练掌握相关知识点和对应题型的解答。应该说考研数学最简单的部分就是线性代数,其计算都是初等的,小学生都会,但这部分的难点就在于概念非常多而且相互联系,线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。同时从考试内容来看,考的内容基本类似,可以说是最死的部分,这几年出的考试题实际上就是以前考题的翻版,仔细研究一下以前考题对大家是最有好处的。
数学代数教学总结(精选16篇)篇十一
由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。
二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
1、线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
四、注重逻辑性与叙述表述。
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
数学代数教学总结(精选16篇)篇十二
20考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
数学代数教学总结(精选16篇)篇十三
线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。
回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即“线性”和“线性问题”;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。
上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。
线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。
无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。
线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:
第一种是以矩阵为中心。
这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。
第二种是以线性方程组为中心。
这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。
第三是一种线性代数体系,以线性变换和线性空间为核心。
在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体系依次安排了线性空间、内积空间、线性变化、矩阵概念和性质等章节。掌握线性变换基础后,再教学线性方程组求解知识,在此基础上,进一步引出特征向量、特征值和二次型理论。整个体系以线性代数为核心,内容介绍、理论讲解及方法系统化为一个整体。
第四是以向量理论为核心。
对二维、三维直角坐标系的研究是线性代数的起源。学生在中学时就已经了解了关于平面向量的一些基本知识,因此,将向量作为整个线性代数知识的核心,有利于使各部分内容的联系更加密切、理论体系更加完整完善,学生的空间概念也能得以加强。矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的`线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。
四、线性和线性问题。
“线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。
了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。
稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。
综上所述,线性代数的学习中应重点培养两个方面的能力:
一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中学阶段的学习,完全掌握了加法和乘法这两种基础运算法则,简单了解了向量运算。矩阵知识相对于前者更加抽象,因此应放在之后学习。线性变换则是线性代数教学中的重点和难点所在,也是最容易被忽视的地方。由于线性变换可结合映射知识学习,而映射知识在中学数学和微积分教学中都有详细的介绍,在此基础上学生更容易理解线性变换及运算的相关知识,更容易解决矩阵特征值问题、线性方程组问题及二次型问题等。
另外一个是思维能力的培养。在学习中,注意引导学生带着问题学习,并在学习中进一步发现问题、解决问题,这是最有效的思维方式和学习方法。前文提到了学习线性代数必须先了解的两个基本问题:什么是“线性”、什么是“线性问题”。这两个基本问题应该始终贯穿性代数的学习过程中。无论在什么阶段的学习,都要注重理论知识和实际问题的有效结合。学生在掌握了一定的理论知识后,可尝试去解决相关的实际问题。在这一过程中,学生会加深对理论知识的理解,并进一步发现自身知识储备的不足之处。若单单追求知识的应用,而不加深自己的理论素养,最终也无法具备良好的思维能力。所以,在学习线性代数时,要培养好两方面的能力,使之相辅相成、相互促进。
结语:
20世纪后50年计算技术的高速发展,推动了大规模工程和经济系统问题的解决,使人们看到,线性代数和相关的矩阵模型是如微积分那样的数学工具,无所不在的线性代数问题,等待着各层次的工程技术人员快速精确地去解决相关线性代数问题。因此绝大对工科学生而言,数学课应该使他们有宏观的使用数学的思想,要使工程师了解工程中可能遇到的各种数学问题的类别,并且知道应该用什么样的数学理论和软件工具来解决,这是一种高水平的抽象。而了解线性代数的核心问题,无疑对线性代数课程的学习有重要的价值。
数学代数教学总结(精选16篇)篇十四
[论文摘要]随着计算杌的普及与应用,多媒体教学已经逐步走进课堂,而且在现代教学中起着越来越重要的作用。本文分析了线性代数多媒体教学的优势与不足,并根据多年从事线性代数教学的经验,给出了如何将多媒体技术运用于线性代数教学的几点建议。
线性代数是理工类、经管类数学课程最重要的基础课之一,其基本内容是讲授向量空间和矩阵的理论。线性代数在数学、力学、物理学和技术学科中有着各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。随着科学的发展,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。线性代数对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用,但普遍被学生认为是比较困难的一门课程,主要的困难是太抽象。多媒体作为一种现代的教育技术,在很多方面显示出其优越性,如何将多媒体技术与传统的教学手段良好的结合并应用于线性代数的教学中,是一个值得关注的问题。
1.扩大课堂容量,提高教学效率。
教学内容多,课时少一直是很多高等学校线性代数课程的一个重要矛盾。我们都知道线性代数课堂教学的特点是板书量大,费时,费力,而用多媒体教学一些重要的定义、定理作成课件直接播放,节省了教师的板书时间,同时增加了更多的'讲解和补充其他内容的时间,可以在短时间内向学生提供更多更有效的信息,有效节省了师生的时间和精力,提高了课堂的学习效率。
2.活跃课堂气氛,增强学习兴趣。
传统教学中都是教师在讲台上讲解,学生面对黑板这样单一的教学模式,利用多媒体技术,通过图像、声音、动画等形式,可以形象直观的展现一些问题的求解过程。另外,利用多媒体还可以增加数学史,数学家轶事等内容,拓展学生的知识面,从而提高了学生的注意力,降低了传统授课方式的枯燥感,增加了学生的学习兴趣。
3.提高教学质量,促进能力培养。
线性代数是一门应用性很强的学科,而传统的教学模式教学效果差,不利于学生创新意识和创新能力的培养。随着科学技术的不断发展,计算机的大规模普及,使得数学实验和数学模型进入到教学环节,运用线性代数中的矩阵、线性方程组等内容建立投入产出模型、leslie人口模型等数学模型,有利于培养学生分析问题和解决问题的能力,为培养创新型人才奠定基础。
随着科学技术的发展,教学手段的日益现代化,多媒体教学已成为现代课堂教学的主要教学手段之一,其教学手段的直观性,教学内容的丰富性,使其具有广阔的应用前景。但多媒体作为一种新兴的教学手段,必然会存在着一定的不足,尤其在线性代数这门具有高度逻辑性和严密推理性的学科的教学中。例如,节奏快,不利于保持学生思维的连续性,不利于学生记笔记;纠错,应变能力差,不利于教师临场的即兴发挥;过多色彩动画、音效使学生眼花缭乱,分散学生注意力;不利于教师和学生良好的互动。"。
线性代数教学中需要多媒体技术,但如何合理的将多媒体技术应用于线性代数课程的教学,是一个值得我们思考的问题。下面结合本人多年线性代数课程的教学经验,对于多媒体技术在线性代数课程中的运用给出一些建设性的建议。
1.虽然多媒体教学相对于传统的教学模式有很多的优势,但并不是所有的教学内容都适合运用多媒体教学,尤其对于线性代数这门具有很强逻辑性的学科。这就需要教师认真备课,钻研教材,根据教学内容有选择的选用多媒体教学。当然,传统的教学模式也有其优势所在,课堂上将传统的教学模式与多媒体教学良好的结合,做到优势互补,以期达到最好的教学效果。
2.色彩、声音、动画是多媒体教学的一大特色,也是最容易吸引学生的注意力,产生学习兴趣的一大亮点,但这些元素的运用不宜过多,否则将会适得其反。因此,教师在制作课件时应该注意,色彩要鲜明,但不要太花哨,声音和动画的运用不要太频繁,以免分散学生的注意力,影响学生对教学内容的理解。而且要充分利用这些优势,例如,对于一些重要的内容要用特殊的颜色加以强调,以加深学生的印象,加强学生的记忆;对于一些概念之间的联系可以采用动画的形式进行演示,使其更直观、形象,易于学生理解。
3.在进行多媒体教学时一定要注意教师与学生之间的交流和互动,把握课堂节奏,不要只顾点击鼠标,照本宣科,让学生感觉是在听报告,而忽略了学生的理鹪和接受情况。课堂上,要多提问,适当的做练习并走到学生中间,了解学生的掌握情况,以便及时调整课堂教学进度,避免教学进度过快,影响教学质量。
4.对于已经讲授完的课件可以传到校园网上,供学生浏览和下载,便于学生温习和记笔记。另外,对于一些习题,思考题也可以在网上给出简要的解题思路,供学生参考和借鉴。
四、结束语。
多媒体教学作为现代化教学的一种手段在优化教学效果中起着越来越重要的作用。在教学过程中,恰当地选择运用多媒体技术,可以激发学生创造性思维,提高学生的洞察力,有效地实施素质教育。当然,多媒体也有其局限性,随着科学的发展,其作用将会更大,其局限性也将逐步减小.
数学代数教学总结(精选16篇)篇十五
本章内容是《课程标准》“数与代数”的重要内容,通过本节学习,学生将会对二次根式的加减乘除运算有更深刻的认识,对实数的简单四则运算会有进一步的理解,因此本章是很重要的知识点。。
本节的主要内容是二次根式的加减运算和加减混合运算,本节的基础是学生已经掌握了把二次根式化成最简二次根式的方法重点是二次根式的加减运算,再通过本节学习使学生学会并熟练加减运算的方法。虽然学生的基础参差不齐,但大多数的学生还是比较好的掌握了。
一、知识目标:
1, 会进行二次根式的加减法运算。
2,学生经历有实际问题引入数学问题的过程,发展学生的抽象概括能力。
3,通过加减法运算解决生活实际问题。
二,情感目标:
1,激发学生的.求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
2,培养学生善于思考,认真细致,一丝不苟的科学精神。
教学重点和难点
重点:合并被开方数相同的二次根式。
难点: 二次根式加减法的实际应用。
数学代数教学总结(精选16篇)篇十六
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.。
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。
用含有数、字母和运算符号的式子把问题中的.数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:
(1)列代数式的关键是理解和找出问题中的数量关系;
(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;
(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。
一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。
常见考法。
列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。
误区提醒。
(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。