教学模式是教师在教学中采用的一种组织和实施教学的方式,具有一定的理论基础和实践经验。接下来是一些教师们编写的关于六年级教案的经验总结,希望对你有所启发。
六年级数学的教案(精选15篇)篇一
使学生知道对于同样的数据可以有多种分析的方法,能根据需要选择合适的统计图,直观、有效地描述数据,进一步发展数据分析观念。
教学重点了解不同统计图的特点,合理选择用不同统计图来未表述。
教学难点熟练掌握不同统计图的特点。
我们已经学过哪些统计图,它们各有什么特点?
名称优点
条形统计图能清楚地看出数量的多少
折线统计图不仅可以反映数量的多少,还能看出数量增减变化趋势
扇形统计图能清楚地反映出各部分与整体的关系
下面几组数据分别选用哪种统计图表示更合适?
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
(3)xxxx年绿荫小学校园内各种树木数量统计表。
第(1)小题
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
绿荫小学xxxx-xxxx年校园内
树木总量变化情况统计图
第(2)小题
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
这题给出了各种树木占树木总量的百分比,用条形统计图和扇形统计图都可以表示出这些信息。但用扇形统计图更能直观地看出部分与整体之间的关系。
第(3)小题
(3)xxxx年绿荫小学校园内各种树木数量统计表。
这题给出了各种树木的数量,只能用条形统计图来表示。为什么不能用其他的统计图?
1、在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。
下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观些?
2、完成教科书第99页“做一做”
3、完成练习二十一第5、6、7、8题
这节课学习了什么内容?应该注意些什么?
六年级数学的教案(精选15篇)篇二
1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2。初步学会用负数表示一些日常生活中的实际问题。
3。能借助数轴初步理解正数、0和负数之间的关系。
重点难点。
负数的意义和数轴的意义及画法。
教学指导。
1。通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2。把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3。培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
课时安排。
共分3课时。
教学内容。
负数的初步认识。
(1)(教材第2页例1)。
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
重点难点体会负数的重要性。
教学准备多媒体课件。
情景导入。
1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。
2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)。
3。引出课题并板书:负数的初步认识。
(1)新课讲授教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。
课堂作业。
完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。
答案:—18℃温度低。
课堂小结。
通过这节课的学习,你有什么收获。
课后作业。
完成练习册中本课时的练习。
六年级数学的教案(精选15篇)篇三
这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。
学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。
1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。
2、培养学生的分析能力与表达能力。
掌握求一个数的几分之几的问题的数量关系,并能正确地解答。
正确地确定单位1
教学过程备注
分析题意,理解数量关系。
教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)
教师然后让学生试着画一画线段图,分析题意。
全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。
列式为:2500=
学生独立完成。
集体订正。
巩固练习。
1、教师出示做一做。
这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。
然后再独立解答。
2、完成练习四中的部分练习。
课堂小结。
板书:
六年级数学的教案(精选15篇)篇四
一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。
从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。
从高位一级一级写,哪一位一个单位也没有就写0.
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.
位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.
整数部分整数读,小数点读点,小数部分顺序读.
小数点写在个位右下角.
小数末尾添0去0大小不变.化简
小数点位置移动引起大小变化:
右移扩大左缩小,1十2百3千倍.
整数部分大就大;整数相同看十分位大就大;以此类推.
1、分数的意义:
把单位“ 1”平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.
2、百分数的意义:
表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.
4、成数:
几成就是十分之几.
六年级数学的教案(精选15篇)篇五
第1课时分数乘法的意义(1)。
【教学内容】教材第2页例1。
【教学目标】。
知识与技能:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感、态度与价值观:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
【重点难点】。
重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:总结分数乘整数的计算法则。
【导学过程】。
【情景导入】。
(一)探索分数乘整数的意义。
1.教学例1(课件出示情景图)师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)。
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)。
3.比较分析。
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)。
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结。
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
(二)分数乘整数的计算方法。
1.不同方法呈现和比较。
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?预设:生1:按照加法计算=(个)。生2:(个)。师:比较一这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法。
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)。
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知。
1.例1“做一做”第1题。
师:说出你的思考过程。
2.例1“做一做”第2题。
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)。
六年级数学的教案(精选15篇)篇六
1.比例的意义。
教学比例的意义。教材提供了含有国旗的四个情境图,由每面国旗长与宽的比值是相等的,引出比例意义的教学。
2.比例的基本性质。
先介绍组成比例的各部分的名称:项、内项、外项;分别计算比例中两个内项之积与两个外项之积,发现两个乘积的关系;再把比例改写为分数形式,把等号两边的分子与分母交叉相乘,发现积的关系。在此基础上,总结出比例的基本性质。
3.解比例。
教材首先介绍什么叫解比例,解比例的依据是什么。
教学解比例,让学生体会解比例在生活中的应用。
解用分数形式表示的比例。教材只根据比例的基本性质把比例转化为方程,解方程则由学生自己完成。
(二)正比例和反比例的意义。
教学正比例的意义。通过水的体积和高度的比值一定,引出正比例的意义,说明体积和高度成正比例关系,体积和高度叫做成正比例的量。接着把正比例的关系进一步抽象概括成(一定)。
教学正比例图像。教材直接呈现例1中体积与高度的正比例关系图像,再让学生体会正比例图像的特点和作用。
教学反比例的意义。编排思路与例1类似。
(三)比例的应用。
1.比例尺。
教材通过主题图教学比例尺的认识。首先给出比例尺的概念,再结合两幅地图介绍数值比例尺和线段比例尺。然后,教材通过一张机器零件放大的图纸,让学生认识把实际距离放大的比例尺如何表示。
把线段比例尺改写成数值比例尺。
根据比例尺和图上距离,应用方程求实际距离。
综合运用比例尺的有关知识解决实际问题。要求学生根据学校操场的实际长度,画出操场平面图。
2.图形的放大与缩小。
教材呈现了照像、用放大镜看书、投影仪放大图表、人和影子等情境,使学生初步认识生活中的放大与缩小现象。
教学图形放大与缩小的特点。
3.用比例解决问题。
教学应用正比例的意义解决问题。
用反比例的意义解决问题。编排思路与例5相似。
【单元教材分析】。
1.体现比例在生产和生活中的广泛应用。
首先知识由实际问题引入,例如由大小不同的国旗引入比例的意义,从“世界公园”的埃菲尔铁塔模型引入解比例,从生活中的放大、缩小现象引入图形的放大和缩小。
其次练习中安排了较多的根据比例意义解比例的实际问题。
第三安排了“比例的应用”一节内容,其中既有正、反比例的实际问题,还有比例尺和图形的放大与缩小。通过这些内容的学习,使学生体会比例在生产生活中的应用,提高学生应用所学知识解决实际问题的能力。
2.渗透函数思想。
函数是数学的重要概念之一。在小学,主要是通过一些知识的学习,渗透函数思想。本单元中正比例和反比例的意义是渗透函数思想的重要内容。因为成正比例和反比例的量实际上反映的是两个变量之间的依存关系。教材通过实例,用列表的形式,体会变量之间的关系,并用、的式子表示两个变量之间的关系。在认识正比例关系时,教材通过图像表示两个变量的关系,加深学生对正比例关系的认识。
【教学目标】。
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
【教学重难点】。
重点:理解比例的意义和基本性质。会用比例知识解答比较容易的应用题。
【教学建议】。
1.重视基本概念的教学。
比例、正比例、反比例是本单元学习的几个基本概念,十分重要。学习比例的相关知识以及比例的应用都有赖于对这些概念的理解和掌握。如解答含正反比例关系的实际问题,首先要对两个量成何比例做出判断,然后依据正比例或反比例数量关系的特点解答教学中要通过观察、比较、判断、归纳等方法帮助学生建立明晰的概念,把握概念的内涵。同时通过应用,不断加深对这些概念的理解和掌握。
2.提高学生综合运用知识的能力。
本单元的知识综合性比较强。所以学习中既要注意新旧知识的联系,又要注意发展学生综合运用知识的能力。教材的编写也注意体现知识的综合应用,例如比例尺的一些练习,不仅限于计算图上距离和实际距离,而且涉及到测量、图形、方向与位置的知识以及根据实际设计比例尺。
【课时数】。
比例(11课时)。
六年级数学的教案(精选15篇)篇七
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
ppt课件。
教学过程:
一、复习导入(8分)。
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)。
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)。
8、尝试解答修改后的问题。
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)。
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题。
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)。
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)。
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调。
4、解决问题要注意:看清求什么率?找出对应的量。
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固。
1、说说下面百分率各表示什么意思。(1颗星)。
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)。
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。
5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)。
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
六年级数学的教案(精选15篇)篇八
1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。
抽取问题。
理解抽取问题的基本原理。
一、教学例。
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
六年级数学的教案(精选15篇)篇九
对于一些组合图形的面积和周长的计算学生容易出错。
学情分析。
还需加强概念的教学,从而提高上课效率。
学习目标。
进一步巩固已学的知识,了解学生掌握知识的情况,便于查漏补缺。
导学策略。
导练法、迁移法、例证法。
教学准备。
投影仪、自制投影片、
教师活动。
学生活动。
1、测试。
2、评析。
3、总结。
考试。
听老师讲解题目。
教学反思。
学生的概念不是理解的很透和解题习惯不好是失分的重要原因。
百分数的应用。
一、单元教学的目标。
1、在具体情境中理解增加百分之几或减少百分之几的意、义,加深对百分数意义的理解。
2、能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的.密切联系。
二、教学内容:百分数的应用、运用方程解决简单的百分数问题。
三、教学重点:能运用所学知识解决有关百分数的实际问题。
四、教学难点:运用方程解决简单的百分数问题。
六年级数学的教案(精选15篇)篇十
整理与复习学到的知识,试一试第1题。
学情分析。
学生知识的整理和归类。
学习目标。
1、进一步理解和掌握以前学过的'知识和计算方法。
2、对所学知识进行巩固和复习。
导学策略。
练习法。
教学准备。
小黑板、投影仪、投影片。
导学流程设计:
教师预设。
学生活动。
一.引入。
1.问:以前几个单元我们一起学习了哪些知识?指名回答。
2.师生一起归纳、整理几个单元所学内容。
3.揭示课题。
4.请学生把知识进行简单的整理。并写下来。
5.与同学进行交流。
二.展开(要多设计一些学生生活实际的题目,让题目靠近学生生活。)。
1.根据学到的知识,请学生提问题。
2.学生自己尝试解决。
3.与同学进行交流。
注意学生的参与性和积极性。
三.综合应用。
投影出示p66练一练第1题。
先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。
三.总结。
四.作业。
学生指名回答。以前几个单元我们一起学习了哪些知识?
学生把知识进行简单的整理。并写下来。
与同学进行交流。
根据学到的知识,请学生提问题。
学生自己尝试解决。
与同学进行交流。
先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程。
教学反思。
达标情况分析:很好。
教学心得体会:多给学生一些思考的空间,学生更喜欢。
六年级数学的教案(精选15篇)篇十一
教学内容:冀教版《数学》六年级上册第92、93页。
教学目标:
1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。
2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。
3、感受数学在解决问题中的价值,培养数学应用意识。
课前准备:一个蒙古包图片。
教学过程:
1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。
师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?
生:蒙古包。
师:对,蒙古包。看,老师带来了一张蒙古包的图片。
图片贴在黑板上。
师:观察这个蒙古包,你都想到了哪些和数学有关的问题?
2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。
师:如果要计算蒙古包的占地面积,怎么办?
生:测量出蒙古包的直径,就能计算出它的占地面积。
生:不好测量。
生:测量出周长。
师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。
板书:周长18.84米。
1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。
师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。
学生讨论。
师:谁来说说已知圆的周长是多少,怎样求圆的面积?
生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。
学生说不完整,教师参与交流。
师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。
学生独立计算,教师巡视并指导。
生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。
学生说的同时,教师板书:
蒙古包的半径:
2×3.14×r=25.12。
r=25.12÷6.28。
r=4。
蒙古包的占地面积:
3.14×42=50.24(平方米)。
如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。
1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。
师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。
学生独立完成,教师个别指导。
师:谁来说一说你的做法,这个蓄水池的占地面积是多少?
生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。
师:看第2题,求花池的面积。自己解答。
交流时,请学习稍差的学生回答。
答案:3.14×2×r=18.84。
r=3。
3.14×32=28.26(平方米)。
2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.
学生完成后,指名汇报。答案:。
3.14×2×r=100.5。
r=16。
3.14×162=803.84(平方厘米)。
生:就是把树锯断后的圆面。
师:树木的周长相当于这个横截面的什么?
生:周长。
师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。
学生读题。
学生可能出现不同意见,都不做评价。
1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。
师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。
学生合作研究,教师参与指导。
学生可能出现不同的假设。如:(1)假设铁丝长1米。
正方形的边长:1÷4=0.25=25(厘米)。
正方形面积:25×25=625(平方厘米)。
圆半径:100÷2÷3.14≈16(厘米)。
圆面积:3.14×162≈803(平方厘米)。
结论:圆的面积大。
(2)假设铁丝长2米。
正方形的边长:2÷4=0.5=50(厘米)。
正方形面积:50×50=2500(平方厘米)。
圆半径:200÷2÷3.14≈32(厘米)。
圆面积:3.14×322≈3215(平方厘米)。
结论:圆的面积大。
(3)假设铁丝长4米。
正方形的边长:4÷4=1(米)。
正方形面积:1×1=1(平方米)。
圆半径:4÷2÷3.14≈0.64(米)。
圆面积:3.14×0.642≈1.29(平方米)。
结论:圆的面积大。
3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。
师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。
生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。
六年级数学的教案(精选15篇)篇十二
第一课时长方体和正方体的认识。
教学内容:长方体和正方体的认识。
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
一、引入新课。
1、由平面图形引到立体图形。
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)。
让学生上去指一指,图上哪3个面是我们能直接看到的`?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点。
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。
(2)棱的特点。
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。
(3)顶点的个数。
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征。
**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高。
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征。
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系。
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题。
学生独立完成后交流。
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
教学后记:
第二课时长方体与正方体的展开图。
教学内容:p3例3、“试一试”“练一练”、练习一第6—7题。
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:学生每人准备正方体、长方体纸盒各一个、剪刀。
学生按小小组分别准备教科书14页思考题中所需的若干张硬纸(每种6张)教学过程:
1、说说长方体和正方体的特征。
2、师:这节课,我们要继续研究有关长方体和正方体的知识。
1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并按照例题所示的步骤进行操作,得到正方体的展开图。
2、把展开图再复原成立体图,再进一步展开、复原,让学生从展开图中找到3组相对的面。
3、让学生独立一剪,并在小组里交流自己得到的展开图,在交流中认识不同的正方体展开图,并思考展开图中的各个面与原来各个面的关系。
4、学生独立完成“试一试”。
拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,先从自己的展开图中找出长方体的3组相对的面,然后在其他同学的不同的展开图中找。最后让学生观察相对的面在不同的展开图上的分布情况,发现其中的规律。
4、“练一练”
第1题让学生在观察展开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将展开图复原成立体图来检验。
第2题。
(1)出示各展开图,引导学生先想像把展开图复原成立体图的过程,再判断。
(2)把教科书117页的图形剪下来试着折一折从而验证自己先前的判断是否正确。
1、练习一第6题。
让学生在仔细观察展开图的基础上作出判断。对于不能围成长方体的图形要说明理由,最后再进行操作验证。
2、先让学生独立思考并进行选择,再通过交流让学生说明选择的根据。
让学生拿出准备好的硬纸,先启发学生思考:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形状和大小有什么关系?再让学生操作。然后说说有没有找到什么规律。
通过学习,你有什么收获?想提醒大家注意什么?
六年级数学的教案(精选15篇)篇十三
掌握解决此类问题的方法。
理解题中的数量关系。
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的`百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%。
方法二:14121.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14。
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
六年级数学的教案(精选15篇)篇十四
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
如何确定每一条跑道的起跑点。
确定每一条跑道的起跑点。
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的.直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)。
五、课外延伸。
200m跑道如何确定起跑线?
六年级数学的教案(精选15篇)篇十五
教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。
使学生掌握用整十数乘的口算方法。
理解用整十数乘的算理。
用十位上的乘后,在得数的末尾填一个0。
例3、例4的教学挂图。
一、复习。
口算下面各题:
1352732304。
1541621405。
指名让学生说一说135、2304、1404的口算过程。
二、新课。
1.教学例3。
教师出示例3的乒乓球挂图,如下:
用纸盖住最右边的一袋,提问:
这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。
接着露出盖住的那袋乒乓球,提问:
刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。
谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。
2.做做一做的第1题。
让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:
这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。
3.做做一做的第2题。
让学生把得数写在书上。集体订正。
4.教学例4。
教师出示例4的.皮球图。如下:
提问:
这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。
620怎样口算呢?
先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:
从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。
求20盒皮球的个数,也就是求几橡皮球的个数?
要求10摞皮球的个数,可以先求几橡皮球的个数?
一摞皮球有多少个?怎样想的?
几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。
一摞是12个,10摞是几个12?是多少?
几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。
算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。
最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。
5.做例4下面的做一做的第1题。
让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;
这几道题和例4的被乘数都是几位数?乘数都是什么数?
一位数乘以整十数在口算时,分了几步?
最后,让学生用这个规律把这道题再口算一遍。
6.做例4下面做一做的第2题。
三、练习。
做练习一的第6~11题。
1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。
2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。
3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。
4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。
5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:
这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。
205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。