教学反思是教师职业发展中不可或缺的一环,它可以帮助我们不断提高自己的专业能力和教学质量。教学反思范文三:针对学生的不同学习需求,进行差异化教学和个性化指导。
等式的基本性质教学设计及反思(专业20篇)篇一
1.使学生进一步理解比例的意义,懂得比例各部分名称。2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。3.能运用比例的基本性质判断两个比能否组成比例。【教学重点】比例的基本性质。
2.应用比例的意义,判断下面的比能否组成比例。6∶10和9∶15。
4.5∶1.5和10∶5教师结合回答说:刚才,你们是根据比例的意义先求出比值,再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?那学完今天的知识----比例的基本性质,老师的秘密对你来说就不是秘密了。
【设计意图】注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
三、反馈。
1.在四人小组里,将你的发现与同伴交流一下。
2.全班交流.(当学生说到比例的基节本性时,师引导学生探究验证.)3.板书:在比例中,两个外项的积等于两个内项的积。
【设计意图】因为学生对比的知识了解甚多,在这一环节,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(完成课本第41面的“做一做”)。
2、:4=6:()。
3、根据比例的基本性质,在()里填上适当的数.(1)15∶3=():1(2)2∶0.5=1.2:()。
5.在a:3=8:b中(。
)是内项,a_b=(。
)6.如果2a=7b(a,b不为零),那么a/b=()/()。
【设计意图】练习主要是运用比例的基本性质。要求学生讲明理由,培养学生有根据思考问题的良好习惯,并与用比例的意义来判断两个比能不能组成比例形成对比;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯,并且充分体现练习的层次性、开放性,让孩子们发现比例的知识的奥妙。
六、通过本节课学习,你有什么收获?还有什么疑问?
【设计意图】关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、布置作业:
1、课本第43页的第5题(全班完成)。
2、课本第44页的第14题(学有余力的孩子完成)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。【板书设计意图】这板书是为了突出重点,让孩子能一目了然地看出比例各部分名称以及两个外项和两个内项的积到底是两个数相乘。
等式的基本性质教学设计及反思(专业20篇)篇二
以前的教材中,在学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等求方程中的未知数。而现行的教材是借用天平游戏使学生理解等式的基本性质,在用等式的基本性质解方程。为初中学习移项、合并同类项等方法作准备。
教授这节课前,我先让学生自己预习,小组互说操作,完成设计好的导学。最后我再课件操作验证学生的结论,一步步引入等式的基本性质。
本节课,根据学生已有知识水平,从学生的生活实际出发,合理运用教材提供的素材,充分挖掘教材;课堂教学的过程应始终体现学生自主探究的教学理念,注意激活学生已有的数学经验,引导学生自己去思考;课上学生们紧跟我的思路,认真思考,积极的参加小组活动,学生表现很积极。
1、等式的性质体现了数学的对称美,教学中让学生在15分钟时间内充分利用天平的直观性,让学生观察、分析现实生活中的现象,并尝试用数学知识来描述这种现象,突出数学与日常生活的紧密联系,使学生获得关于等式性质的知识,并养成认真观察的学习态度。通过直观演示,帮助学生感悟怎样才能使天平的两端保持平衡,引导学生以等式的基本性质为解方程的基本方法,生动直观地呈现解方程的原理。这样设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。在教学中采取先扶后放、动手实验操作的形式,也为学生提供了更多的参与学习的机会。培养了自主学习、动手操作等能力,体现了以学生为主导,教师为主体。
2、猜想入手,激发学习兴趣。猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
3、学生展示环节非常好,不仅仅展示了实验过程、现象,总结了规律,在展示过程中,能积极补充、质疑,个别同学质疑的问题很有价值。
等式的基本性质教学设计及反思(专业20篇)篇三
《等式的基本性质》是五年级第二学期认识方程的第二、三课时。等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。这学期我们学习等式的两个性质,因此把等式两边同加的这条性质作为重点讲解内容,另一条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式的性质一时,通过课件演示,第一层次,在天平两边同时放上同样的物品,并用等式表示(50=50)。第二层次,问:怎样在天平的两边增加砝码,使天平仍然保持平衡?得出两个等式50+10=50+10;50+20=50+20;……50+a=50+a问:你发现了什么?学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。也就是等式两边同时加上同一个数,所得的结果仍然是等式。这样的设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的`同时,也注意到将等式与课件演示进行结合学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。有了这样的学习基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。
等式的基本性质教学设计及反思(专业20篇)篇四
1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。
学习难点会根据比例的基本性质判断两个比能否组成比例。教具学具:ppt课件教学环节。
一、复习(课件出示以下问题,指名学生回答)。
1、什么叫做比例?
2、什么样的两个比才能组成比例?
3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。
判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。
二、自主探索,体验新知。(课件出示自学要求)。
1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:
(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。
2、组织学生交流自学成果。1)试一试。
应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。
3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。
三、巩固练习。
课件出示练习题,学生练习。
四、课堂总结说一说本节课的收获。
等式的基本性质教学设计及反思(专业20篇)篇五
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析。
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标。
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点。
重点:学生掌握比的基本性质,并正确地化简比。
教学过程。
一、情景激趣,提出问题。
1、出示例3的表格。
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知。
2、讨论二:可以写出多少个比值是4/5的比呢?
三、尝试运用,解决问题。
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结。
师:通过这节课的学习,你有什么收获?
比的基本性质是学生在已经掌握了商不变的性质和分数基本性质的基础上来学习的,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、比与除法的关系,推导出比的基本性质,所以这节课我充分调动的思维。
一)、我先组织学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、比与除法的关系就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。这叫做比的基本性质。在举例验证的过程中我引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力。
当讲完了比的基本性质后出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。化简比的教学我采用尝试法,由学生尝试化简,遇到问题小组共同探讨,找到化简方法,通过板演,方法还真不少,除了常规方法,还可以求比值,有人干脆把后项直接化成1.。不管采用那一种方法,只需符合规律,都给予充分的肯定,尊重了学生的情感、态度价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣。
三)、不足之处:
1.在练习中引导学生比较求比值和化简比的区别,是本节课的难点,在小组讨论总结的基础上,做了课件展示。展示时速度有点快,应放慢一些,更好地突出难点的解决策略。通过对比,加深学生对两种不同要求,在结果表达上的不同,解题过程,解题方法上的区别。
2.由于时间关系学生的讨论时间不够充分。
等式的基本性质教学设计及反思(专业20篇)篇六
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学难点:根据乘法等式写出正确的比例。
教学准备:多媒体课件。
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程。
一、旧知铺垫导入。
2、比和比例有什么区别?
设计意图:注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)。
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)。
3、根据比例的基本性质,在()里填上适当的数。(投影出示)。
六、全课总结:这节课你有什么收获。
设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15。
等式的基本性质教学设计及反思(专业20篇)篇七
使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。
教学重点和难点。
教学过程。
一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?
师:比与我们学过的那些知识有联系?有什么联系?
师:看来大家对前面学过的知识掌握得比较好。
(导入新课)。
师:大家想一想这个猜想有没有研究的价值?
师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。
师:是吗?同学们想不想听一听这位同学的高见?
师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?
师:大家同意吗?
师:能举例说明吗?比如180:120化成最简整数比是什么?
师:怎么化简的?根据是什么?
教师根据学生的讲述板书:
180÷120=(180÷60):(120÷60)=3:2。
2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40。
(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。
师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?
师:看来大家对这部分知识掌握的的确非常好了。
四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?
五、人教版小学数学六年级上册第47--48页练习.十一第1、3。
板书设计。
比的前项与后项同时乘或除以同一个数(0除外),比值不变。
180÷120=(180÷60):(120÷60)=3:2→最简整数比。
同时除以这两个数的最大公因数。
等式的基本性质教学设计及反思(专业20篇)篇八
它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。
第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。
然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。
通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。
这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的基本性质教学设计及反思(专业20篇)篇九
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。
第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。
然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。
通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。
这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的基本性质教学设计及反思(专业20篇)篇十
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点:
教学准备:多媒体课件。
教学过程:
一、复习旧知。
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2。
所以6∶10=9∶15生2:因为20∶5=4∶1。
28∶7=4∶1。
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“。
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
三、巩固练习。
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题。
(1)下面四个数。
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结。
今天我们学习了什么内容?你有什么收获?
等式的基本性质教学设计及反思(专业20篇)篇十一
《等式的基本性质》教学反思等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。起初,我们在设计这节课时,四条性质的教学力量分布得比较平均,等式两边同加、同减、和同乘的实验由教师演示,等式两边同除的实验再放手让学生独立完成。
在教学之后,我们发现这样的设计,重点不够突出,在经过了网络研讨和集体反思之后,最终形成了将等式两边同加的这条性质作为重点讲解内容,其它的三条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
这一环节在实验的基础上让学生灵活的运用字母表示数的知识,在理性的思考,形象的'演示的基础上,在推理后验证自己的想法,不仅学生的数学思维得到有效的训练,还使学生对等式的性质有了一定的认识。有了以上的实验基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便可以逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。
将本文的word文档下载到电脑,方便收藏和打印。
等式的基本性质教学设计及反思(专业20篇)篇十二
教师的情绪也比较平淡,没有给学生创设轻松愉快自然的氛围,使得前半部分的课堂有点沉闷,敢于大胆发言的学生也比较少。由此可知:教师进入课堂就要立刻调动自己的情绪,使学生有轻松活泼的感觉,学生才会调动自己的情绪,将注意力集中到教师所传授的知识上,大胆地发表自己的想法。课堂也才会有活力。
从学生的反应来看,这种提出问题让学生先猜测的教学方法,因为平时训练的少,教师突然放手,学生不知所措,不知道如何去思考。学生还习惯于在老师的引导下去掌握新知,巩固新知,然后学会解题。即学生的创新能力的培养还不够,需要加强。
同时也提醒教师在设计问题时要从本班学生的`实际情况出发,要有层次,有坡度,使学生的思考有方向,有目标,一步一个台阶,最终达到预期的效果。课堂上教师在发现学生出现愣神时,及时将问题简单清晰化是明智的。这个现象在含加法的方程中也出现过,如:75+x=150,有学生写:75+x-x=150—75,x=75。分析原因在于:教学中的例题,多数是x在运算符号的前面,然后根据等式的性质使左边只剩下x时,都是左边加几,等式两边就同时减几,学生形成思维定势,只看左边运算符号后面的数,说明学生对等式的性质的理解不透彻,解方程时是“照葫芦画瓢”,并没有真正掌握解方程的方法,学生灵活运用的能力薄弱。
等式的基本性质教学设计及反思(专业20篇)篇十三
1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。
经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。
本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。
为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
1、媒体准备:白板。
2、资源准备:ppt。
1、导入——课件出示问题-——唤醒旧知。
2、探究新知——ppt课件——突破重点、分解难点。
3、拓展延伸。
一、联系旧知,质疑引思。
1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?
2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?
3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?
【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】。
二、自主操作,验证猜想。
1、初步验证。
(1)提出问题。
(2)汇报方法。
2、深入验证:
(1)在纸上写上一组你认为可能相等的分数;
(2)用你喜欢的方法来证明。
(3)学生操作。
(4)汇报交流。
(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?
(2)归纳概括,总结规律,揭示课题。
4、运用规律,完成例2。
(1)理解题意。
(3)独立完成,交流汇报。
【给学生提供开放的探究空间,满足学生的探索欲望。】。
三、知识应用,巩固提升。
1、判断。
(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。
(2)两个分数的分子、分母都不相同,这两个分数一定不相等。
石泉县城关第二小学。
贾从先的分子乘以3,分母除以3,分数的大小不变。
才能使分数的大小不变?
四、回顾总结,完善认知。
通过本节课的学习,你有什么收获?
1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。
2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。
3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。
等式的基本性质教学设计及反思(专业20篇)篇十四
根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。
在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的意义。
我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。
巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。
课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。
不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。
文档为doc格式。
等式的基本性质教学设计及反思(专业20篇)篇十五
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
:理解和掌握分数的基本性质,会运用分数的基本性质。
ppt课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
一、故事导入激趣引思。
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
生发表见解。
二、自主合作探索规律。
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视。
4、全班汇报。
5、反思规律看书对照找出关键词要求重读共同读。
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律。
生自学。
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化。
1、判断对错并说明理由。
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数。
4、对对碰与1/2,2/3,3/4生生组组师生互动。
五、课堂小结课堂作业。
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
等式的基本性质教学设计及反思(专业20篇)篇十六
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析。
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标。
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
等式的基本性质教学设计及反思(专业20篇)篇十七
1。让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2。根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3。培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1、师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)。
2。师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。
3。师:“同学们,观察这些圆的阴影部分,你有什么发现?”
:原来三个圆的阴影部分是同样大的。
师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)。
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。
“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)。
1、学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2、学生练习课本例题2,两名学生在黑板上做。
3、学生自己小结方法。
4、按规律写出一组相等的分数。
等式的基本性质教学设计及反思(专业20篇)篇十八
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析。
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标。
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点。
教学过程。
1、出示例3的表格。
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
2、讨论二:可以写出多少个比值是4/5的比呢?
先尝试独立完成“练一练”,再在小组内交流方法。
师:通过这节课的学习,你有什么收获?
等式的基本性质教学设计及反思(专业20篇)篇十九
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学重、难点:化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?分数的基本性质是什么?
2、比与除法、分数有什么关系?
3、求比值 5:15 4/5:8/15 0.8:0.12。
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道。
和除法、分数有着密切的联系,比的前项相当于被除数,比的。
项相当于除数;比的前项也相当于分数的分子,比的后项相当。
分母。
那么在比中有什么样的规律?让学生自己讨论初步说出结论。
比的前项和后项同时乘以或者同时除以相同的数(零除外)。
注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)14:21 (2)1/6:2/9 (3)1.25:2 。
(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)。
(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。
小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简比的方法。
2.练习十二第5、7、8题。
3.练习十二第9题。
四、作业。练习十二第6、10题。
等式的基本性质教学设计及反思(专业20篇)篇二十
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
多媒体课件。
一、复习旧知。
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2。
所以6∶10=9∶15生2:因为20∶5=4∶1。
28∶7=4∶1。
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“。
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
三、巩固练习。
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题。
(1)下面四个数。
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结。
今天我们学习了什么内容?你有什么收获?