教学工作计划需要细化每个学习模块的教学目标和教学策略,确保学生能够全面、系统地掌握知识。如果您需要参考一些教学工作计划的范文,以下是一些可供参考的优秀作品。
加法运算定律数学教案(热门16篇)篇一
知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。
过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。
情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。
教学重点。
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点。
乘法分配律的应用。
多媒体课件。
一、复习导入。
二、学习乘法交换律和乘法结合律。
1、学习例5。
(1)出示例5。
(2)学生在练习本上独立解决问题。
(3)引导学生对解决的问题进行汇报。
4×25=100(人)。
25×4=100(人)。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:a×b=b×a。
2、学习例6。
(1)出示例6。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(25×5)×225×(5×2)。
=125×2=10×25。
=250(桶)=250(桶)。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
能试着用字母表示吗?
学生汇报字母表示:(a×b)×c=a×(b×c)。
(4)完成例6下面做一做的第一题。
3、学习例7。
(1)出示例7。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
能试着用字母表示吗?
学生汇报字母表示:(a+b)×c=a×c+b×c。
a×(b+c)=a×b+a×c。
(4)完成例7下面做一做的第一题。
3、学习例8。
(1)出示例8。
(2)收集信息,明确条件问题。
(3)学生独立思考,尝试解决问题。
(4)读懂过程,感悟不同方法。
课后小结。
今天你有什么收获?
加法运算定律数学教案(热门16篇)篇二
教材第66~67页运算定律、规律,及其后的练一练,练习十二第68题。
使学生进一步理解和掌握小学数学里学过的运算定律和一些规律,能应用运算定律或规律进行简便运算,培养学生合理、灵活地进行运算的能力。
1、口算。
7.2+2.8 42.5 812.5 34
1-0.8 56+44 0.50.2 10-3.7
2、揭示课题。
我们已经复习了整数、小数四则运算的计算法则。今天,我们复习整数、小数四则运算的运算定律。(板书课题)通过复习,要进一步理解和掌握学过的一些运算定律和运算的规律,并能应用这些定律和规律进行简便计算,学会合理、灵活地进行计算的方法。
1、整理运算定律。
(1)出示第66页表格。
提问:我们学过哪些运算定律?(板书填表)谁能用数举例并用字母式子来说明加法交换律?(根据口答板书填表)
(2)对下面这些运算定律,大家都能这样举例和用字母表示吗?指名板演,其他学生填在课本上。集体订正。
2、应用运算定律。
(1)提问:运算定律有什么应用?
指出:应用运算定律,可以根据算式里数的特点,使一些运算简便。这样,就可以又对又快地算出这些算式的结果。下面就分析一些题里数的特点,用简便算法进行计算。
(2)做练一练第l题。
指名四人板演,其余学生做在练习本上。集体订正,结合让学生说出简便计算的依据和为什么这样算。
1、出示第66页最下面两题。
要求学生在课本上填写符号。指名口答,老师板书。指名说一说每个等式表示的意思。
2、提问:你知道减法和除法计算时,哪些情况可以应用这些规律使计算简便吗?指出:计算连减或连除时,如果两个减数先加或两个除数先乘,可以用口算计算出算式的得数,就可以顺着用这两个规律使计算简便;反过来看,如果把减去两个数的和转化成连减或者除以两个数的积转化成连除来计算,能直接口算的,可以反过来用这两个规律使计算简便。
3、做练一练第2题。
指名四人板演,其余学生做在练习本上。集体订正:先看数的特点,再说依据什么来计算的。
4、做练一练第3题。
(1)做加、减式题。
指名两人板演,其余学生做在练习本上。集体订正,说说怎样想的。提问:从这里的计算,你发现什么时候可以用这样的简便算法?加、减接近整十、整百数的时候用简便算法可以怎样想?指出:加上或减去接近整十、整百的数时,可以先看做整十、整日的数计算,然后根据应该加上的数,确定再加上或减去几。
(2)做乘法式题。
出示乘法题,让学生思考怎样算简便。指名口答,老师板书,井要求学生说说是怎样想的。
1、说说下面题里的数有什么特点,怎样算简便。
0.8+4.6+0.2+5.4 12.5 2.50.84
9.6-5.7+0.4 6.31.4+3.71.4
2599 341-103 418+297
159+102 253-98 490352
2、改错。
出示练习十二第7题。让学生改在课本上。指名口答,老师板书改正,让学生说说错在哪里。
这堂课复习了什么?通过复习你有哪些收获?指出:我们在式题计算时,要注意先看清题目,分析数据的特点。如果数据符合一些运算定律或规律,能用简便算法时.一般应用简便算法,这样可以算得又对又快。
课堂作业:练习十二第6题后五行。
家庭作业:练习十二第8题。
加法运算定律数学教案(热门16篇)篇三
1.通过尝试解决实际问题,观察,比较发现并概括加法交换律。
2.初步学习用加法运算定律进行简便计算,并用来解决实际问题。
3、提高观察、概括能力和语言表达能力。
教学重难点。
初步学习用加法运算定律进行简便计算,并用来解决实际问题。
教学工具。
课件。
教学过程。
(一)谈话导入,
孩子们你们知道我们班上有多少小女孩?多少小男孩?那么我们班上一共有多少个孩子?
学生列式,师板书。
(二)呈现事实,形成问题。
1.出示准备题:
(1)27+73(2)37+58。
73+2758+37。
2.学生计算得数。
3、请学生观察两组算式,说说有什么发现?
投影书上的主题图,
你搜集到了什么信息?
今天李叔叔一共骑了多少米?根据学生回答板书:40+56=96千米。
56+40=96千米。
和前面的两个例子比较你发现了什么?、
4根据学生回答板书:猜想--两个数相加,交换加数的位置它们的和不变。
既然和不变,每组算式可以用什么符号连接呢?(=)。
5.问题:这个猜想正确吗?
(三)验证猜想,形成结论。
1、验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。
让学生举例,
如35+20=20+35等等让学生多说。
同桌互说。
学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。
2、同学自己设计一组式题验证,小组交流结果,汇报结论。
3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例子。
全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。
例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)。
(1)口答列式:476+518518+476。
为什么这样列式?
(2)判断:得数会相同吗?
(3)计算结果,得出结论:476+518=518+476。
在加法中,交换加数的位置,和不变。
4.揭题:这就是我们今天要学习的“加法交换律”(板书)。
5这种规律在其他运算中有吗?学生质疑,验证。在这个环节中有出现个别代表一般的给予举例纠正。
学生自学书本、质疑。
6.小结:
(1)什么是加法交换律?
用字母a、b表示加法交换律。板书:a+b=b+a。
(四)应用成果,巩固新知。
1.学习加法交换律的最终目的是用。
问:验算加法,我们用什么方法?根据什么?
2.“练一练”1,先计算出得数,再用加法交换律进行验算。
问:验算方法运用什么运算定律?
3、“练一练”
(1)分组完成。(每组一生板演,比赛形式进行)。
(2)指名说出验算方法和根据。
4、放录音、做游戏--“我该在什么位置”
(1)将卡片470、880、1013、214、58、58发给六个同学。
(2)伴随音乐,寻找自己的位置,并贴上。
(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。
(五)反思过程,学会学习。
3.质疑:满足“和不变”这一要求,有没有其他可能?
课后习题。
完成课后练习题。
加法运算定律数学教案(热门16篇)篇四
一、素材的选取。
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
二、本单元的情景串。
本单元有2个信息窗。
1、情景图的解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量。
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。乘除法各部分的关系。(第六题)。
高速山东乘法运算律小学数学教案范文总汇。
加法运算定律数学教案(热门16篇)篇五
人教版四年级数学下册第三单元《运算定律》24~25页内容。
【学情分析】。
乘法运算定律与之前所学的加法运算定律类似,学生理解起来难度不大,但是本班有三名学困生,需要重点关注和引导他们,掌握乘法运算定律。乘法运算定律不仅有助于加深乘法计算方法的理解,还能使计算简便,所以需要学生理解并注意与加法运算定律的区别。本节课的讲授注重从生活实际创设情境引入课题,并充分利用之前所学的加法运算定律,由学困生和其他学生一起来类比归纳乘法运算定律,充分调动学困生积极性。
【教材分析】。
学生对乘法交换律在以前的学习中已有初步认识,在作业或者练习中已经接触过当一个乘法算式里的因数交换位置后,通过计算会发现它们的积并不变。这节课利用例子,让学生特别是学困生观察、发现对任意两个整数相乘有同样的性质,从而总结出“乘法交换律”。对于乘法结合律这部分内容,教材是在学生已经掌握了乘法的意义,并且对乘法交换律有了初步认识的基础上进行教学的。正确理解掌握乘法运算定律,可以加深学生对计算方法的灵活性选择,同时,对今后整数的乘法、有理数的乘法都有一定的作用,因此学好乘法运算定律,在数学中具有重要的基础地位和桥梁作用。
【教学目标】。
知识与技能:引导学生探究和理解乘法交换律、结合律。
过程与方法:培养学生根据具体情况选择算法的意识与能力,发展思维的灵活性。
情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
【教学重难点】。
重点:引导学生探究和理解乘法交换律、结合律。
难点:能用所学知识解决简单的实际问题。
【教学方法】。
教法:教师通过创设情景、启发、引导相结合的方式进行课堂教学。
学法:学生通过观察比较、发现交流、练习的方式进行课堂学习。
【教学准备】课件、练习纸。
【教学过程】。
一、复习导入。
师:同学们,前面我们学习了什么运算定律?
学困生1:加法交换律、加法结合律。
师:加法交换律、加法结合律用字母怎样表示?
学困生2:a+b=b+a。
学困生3:(a+b)+c=a+(b+c)。
师:其实乘法也满足一些运算定律,你想知道乘法满足哪些运算定律吗?(想)。
二、探究新知。
你知道植树节是几月几日吗?
1、教学乘法交换律。
(课件出示教材情景图)。
师:你从图中可以得到哪些数学信息?
学困生2:一共有25个小组,每组里4人负责挖坑、种树……。
师:要求什么问题?
学困生2:负责挖坑、种树的一共有多少人?
师:怎么列式?
学困生1:4×25。
生:还可以这样列式25×4。
师:计算这两个算式的积是多少?
生:都是100。
师:4×25=25×4(板书)。
师:你能仿照这个式子再举几个这样的例子吗?
生:能。
让学生举例。
师:这样的例子能举完吗?
生:不能。
师:请仔细观察这些式子有什么特点?
生:因数不变,积相等,因数位置变化。
师:这就是乘法交换律。
你自己尝试总结乘法交换律。
生:交换两个因数的位置,积不变。
师:很好,两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
师:你能用字母表示乘法交换律吗?
生:能。
师:把它表示在练习纸上。
学困生2回答。
师:刚才同学们通过学习,知道乘法也有交换律,那么乘法中会不会也有结合律呢?下面我们继续观察植树情景图。
(课件出示植树情景图)。
师:一共需要浇多少桶水?怎么列式?
学困生1:(25×5)×2生:25×(5×2)。
师:你能说出每个算式的意义吗?
学困生1:算式(25×5)×2中,25×5是先算一共种了多少棵树,再算一共要浇多少桶水。
生:算式25×(5×2)中,5×2是先算每个小组要浇多少桶水,再算25个小组一共要浇多少桶水。
师:把它计算在练习纸上。
做完后让学困生3和其他学生写在黑板上。
师:通过上面的计算,你发现什么?
生:积相等。
师:(25×5)×2=25×(5×2)。
师:你能再举几个这样的例子吗?
生:能。
学困生2和其他学生举例。
师:这样的例子能举完吗?
生:不能。
师:请仔细观察这些式子有什么特点?
生:因数不变,积相等,运算顺序不同。
师:这就是乘法结合律。
师生一起概括乘法结合律。
三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
师:你能用字母表示乘法结合律吗?
生:能。
师:把它表示在练习纸上。
师:比较(25×5)×2和25×(5×2)的算法,哪种计算简便?为什么?
学困生1:第二种,后两个数先乘是整十,容易计算。
生:相同点:交换律是交换两数的位置,数和结果不变;结合律是改变运算顺序,数和结果不变。不同点:加法交换律和加法结合律中的数之间是加号连接,数叫加数,结果叫和;乘法交换律和乘法结合律的数之间是乘号连接,数叫因数,结果叫积。
三、巩固练习。
1、在里填“”“”或“=”。
36×1919×36 27×4×2527×(4×25)。
125×24125×8×367×868×7。
学困生2回答。
12×32=32×___108×75=___×___。
学困生3回答。
30×6×7=30×(6×___)。
125×(8×40)=(___×___)×___。
其他学生回答。
【设计意图:通过练习,加深对知识的理解,起到巩固知识和灵活运用知识的作用。】。
四、归纳总结。
这节课有什么收获呢?
生1:我们今天学习了乘法的两个运算定律——乘法交换律和乘法结合律,并会用字母表示这些运算定律。
生2:乘法运算定律与加法运算定律的`对比,让我知道了它们的区别。
五、课堂检测。
完成后对答案,互判。
【设计意图:了解学生掌握情况。】。
六、布置作业。
课本27页练习七第1、2、3题。
七、板书设计。
25×4=4×25。
(25×5)×2=25×(5×2)。
a×b=b×a。
(a×b)×c=a×(b×c)。
加法运算定律数学教案(热门16篇)篇六
你们好!我今天说课的内容是人教版小学数学四年级下册《加法的运算定律》,下面,我从教学目标、教法、学法、教学程序四个方面对本课的教学设想进行阐述。
首先,谈谈教学目标的设定。本课我设定了以下教学目标:
1、经历规律的探究过程,理解加法交换律和结合律。能运用加法交换律和结合律进行运算。
2、在猜想、验证结论应用的过程中,习得举例验证的方法,感悟符号思想,培养实事求是的品质。
3、使学生在数学学习活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识。
设定以上教学目标的依据有以下三点:
一是基于对课标的理解。
课程标准指出:学生应当有足够的时间和空间,经历观察、实验、猜测、计算、验证等过过程,发展合情推理能力。能独立思考,感悟数学基本思想。这就要求在课堂教学中关注过程目标,关注核心概念的落实。
二是基于对教材的分析。
加法运算定律是人教版小学数学四年级下册第三单元《运算定律》中的内容,属于数与代数领域,是在学生掌握了四则运算的意义的基础上教学的。运算定律是运算体系中最具普遍意义的规律,是运算的基本性质,可作为推理的依据。本单元所学习的五条定律,在数学中具有重要的地位和作用,被称为“数学大厦的基石”。学好本课,既有助于学生进一步理解整数四则运算的意义,体会四则运算间的关系。又有助于培养学生的模型思想,积累丰富的四则运算活动经验。还有助于培养学生合理选择算法的能力,发展思维的灵活性。我认为这样安排,旨在依托四则运算的意义,调动学生的经验,通过对比引导学生习得验证的方法,在验证的过程中加深对规律的理解,发展归纳推理能力和符号意识。
三是基于对学情的认识。
从经验上来看,学生在前面的学习中,积累了一定的加法运算定律的计算经验,对四则运算的意义有了理性的认识,这些都有助于他们学习本课。从认知水平看,四年级学生的抽象思维有了一定的发展,但以形象思维为主,所以理解抽象的运算定律对他们来说就有一定的难度。
据此,我将本课的重难点确定为理解加法交换律和加法结合律的意义。难点拟定为领悟举例验证的方法。
然后,谈谈教法设计。
课标指出:数学教学活动要激发学生兴趣,调动学生的积极性,引发学生的数学思考,鼓励创造性思维,注重培养学生良好的学习习惯和掌握恰当的学习方法。力求突出学生的主体地位,根据本课教学目标和学生的学情,本课以引导探究为主,综合运用启发谈话法、直观演示法进行教学。导入环节用学生日常学习中熟悉的等式引导学生观察提出猜想,然后采用启发谈话法,组织学生举例验证,最后借助点子图用多媒体课件直观演示加法交换律和结合律的道理,使学生更加信服。
接着,谈谈学法设想。
苏霍姆林斯基说:在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、探索者。本课在学法指导上力求突出“自主探索、合作交流”的学习形式,学生以猜想――验证――结论――应用为学习思路,不断提高学习能力。新课导入环节,学生观察题组,提出猜想,探究环节,学生先独立思考验证的方法,再合作交流,这样相互启发,让学生意识到尽可能全面的举例验证才能证明结论正确,从而习得验证的方法。在练习环节中,学生独立思考,或填空,或判断,不断内化新知。
最后,谈谈教学流程的预设。
基于以上构想,为达成教学目标,本课教学拟定为以下环节:
环节一:导入新课。
以题组的形式,激活学生的经验,便于学生提出猜想。
环节二:探究加法交换律和结合律。这是本课的教学重点。
第一步,提出猜想。以“仔细观察,试着用一句话说说什么变了,什么没有变?”的问题引导学生观察题组一和题组二,提出加法交换律和结合律的猜想,教师相机板书。第二步,验证猜想。以“是不是任意的数相加都有这种规律呢”?的问题让学生意识到,通过几个例子得出的发现只是猜想,要想应用还必须验证,激发学生探究的欲望。以“你打算怎样验证呢?”启发学生思考验证的方法。抓住两个要素:要素一:数是任意的,可以是小数、整数、分数,要素二:要通过计算,根据结果来判断。这样做旨在让学生感悟应用不完全归纳时举例尽可能全面,并且感受数学的严谨性,用事实说话。第三步,总结规律。在学生举例验证和教师演示后及时提炼规律,形成统一的认识,方便学生使用。
环节三:课堂梳理,巩固练习。
这个环节的主要目的是巩固运用加法交换律和结合律。练习题1是填空练习,意在巩固加法交换律和结合律的特点,提炼字母公式,建立模型。练习2是判断练习,意在加深加法运算定律的认,区别加法交换律和结合律。练习3是探究4个加数的简便运算。意在突出规律的应用,使学生感受加法运算定律的价值。
环节五:自我评价。
课标指出:要重视课堂教学评价,使之成为教师改进教学和激励学生学习的有效手段。帮助学生正确认识自我,树立信心。通过自我评价、相互评价,激励学生更好地学。
以上就是我全部说课内容,根据课堂生成情况有可能会有所调整。我的说课到此结束,敬请各位批评指正。谢谢大家!
加法运算定律数学教案(热门16篇)篇七
一、素材的选取。
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。1999年被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
二、本单元的情景串。
本单元有2个信息窗。
1、情景图的解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张2003年济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量。
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。乘除法各部分的关系。(第六题)。
高速山东乘法运算律小学数学教案范文总汇。
将本文的word文档下载到电脑,方便收藏和打印。
加法运算定律数学教案(热门16篇)篇八
知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。
过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的.灵活性。
情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。
教学重点。
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点。
乘法分配律的应用。
多媒体课件。
一、复习导入。
二、学习乘法交换律和乘法结合律。
1、学习例5。
(1)出示例5。
(2)学生在练习本上独立解决问题。
(3)引导学生对解决的问题进行汇报。
4×25=100(人)。
25×4=100(人)。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:a×b=b×a。
2、学习例6。
(1)出示例6。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(25×5)×225×(5×2)。
=125×2=10×25。
=250(桶)=250(桶)。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
能试着用字母表示吗?
学生汇报字母表示:(a×b)×c=a×(b×c)。
(4)完成例6下面做一做的第一题。
3、学习例7。
(1)出示例7。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
能试着用字母表示吗?
学生汇报字母表示:(a+b)×c=a×c+b×c。
a×(b+c)=a×b+a×c。
(4)完成例7下面做一做的第一题。
4、学习例8。
(1)出示例8。
(2)收集信息,明确条件问题。
(3)学生独立思考,尝试解决问题。
(4)读懂过程,感悟不同方法。
课后小结。
今天你有什么收获?
课后习题。
78×85×17=78×(_____×______)。
81×(43×32)=(_____×______)×32。
(28+25)×4=×4+×4。
15×24+12×15=×(+)。
6×47+6×53=×(+)。
(13+)×10=×10+7×。
2、判断对错。
(1)39×22—39×2=39×22—2()。
(2)39×22—39×2=39×(22—2)()。
(3)39×28+39×72=39×28+72()。
(4)39×28+39×72=39×(28+72)()。
(5)39×12=39×(12—2)()。
(6)39×12=39×(10+2)()。
交换两个因数的位置,积不变。这叫做乘法交换律。
先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
文档为doc格式。
加法运算定律数学教案(热门16篇)篇九
教学内容:教科书第74页第5题,练习十七的第7一12题。
教学过程:
一、复习运算定律。
随着学生的回答,教师板书:
加法乘法。
交换律:a+b=b+aab=ba。
结合律:(a+b)+c=a+(b+c)(ab)c=a(bc)。
分配律:(a+b)c=ac+bc。
然后引导学生对它们之间的联系和区别进行横向比较。
加法交换律和乘法交换律有什么相同点和不同点?(相同点:都是把两个数交换位置,运算结果相同;不同点:运算方法不同。)。
加法结合律和乘法结合律有什么相同点和不同点?(相同点:都有三个数,不管相邻的哪两个数先进行运算再同另一个数运算,结果都不变;不同点:运算方法不同。)。
通过比较,使学生明确加法和乘法的交换律、结合律,表达式类似,只是运算方法不同。
2.练习。s。
(1)做第81页的第5题。
让学生看一看这道题中的算式各符合哪个运算定律,然后分别填在横线上。
(2)做练习十七的第8题。
根据运算定律给每个算式填上适当的运算符号或数,订正时,说一说依据。
二、复习简便算法。
1.让学生做下面的题,并说一说怎样做简便,应用了什么运算定律。
82十78十2263550。
136十68十641258050。
25十43十75十574542520。
271十53十47十29627十387。
2.让学生口算下面各题,并说一说是怎样算的。
469十98437305。
469一983244852。
3.让学生做练习十七的'第9题,指名说一说简便计算的依据。
三、巩固练习。
2.做练习十七的第10一12题。
(1)第10题,让学生独立做,集体订正时,说一说运算顺序。
(2)第11题,独立做,集体订正。
(3)第12题,让学生先自己做。其思路是:先求出第一个小长方形木板的面积,然后求它的宽,最后根据边长的特点分割。
2.对学有余力的学生让他们做练习十七的第13一14题和第81页的思考题。
思考题,让学生自己找规律填数。
加法运算定律数学教案(热门16篇)篇十
1、通过观察发现,掌握加法交换律的意义。
2、学会用自己喜欢的方式表示加法交换律,初步感知代数思想。
3、会运用加法交换律验算加法。
过程与方法。
1、经历加法交换律的发现过程,体验观察比较,举例论证,总结归纳的学习方法。
2、经历加法交换律的应用过程,体验数学知识间的联系和它的广泛应用性。
情感、态度与价值观。
让学生感受发现知识的快乐,激发学生的兴趣,感受数学与生活的联系。培养学生学数学、用数学的乐趣。
教学重点:理解并掌握加法的交换律。
教学难点:能根据实际情况,在计算式灵活应用加法运算律。
多媒体、板书。
创设情境,探究新知。
(1)理解题意。
求李叔叔今天一共骑了多少千米,就是求上午和下午一共骑了多少千米?
用加法:40+56或56+40。
师:今天我们就来学习一下加法运算的定律。
(2)解决问题。
40+56=96(km)或56+40=96(km)。
(3)观察算式,发现定律。
观察40+56=56+40,发现,等号左、右两边的加数相同,只是交换了位置,但结果不变。由此可以得出结论:交换加数的位置,和不变。
(4)验证定律。
是否所有的加法算式交换加数的位置,和都不变呢?可以举例验证。如:
0+200=200;200+0=200所以0+200=200=0。
11+78=89;78+11=89所以11+78=78+11。
发现:任意两个数相加,交换加数的'位置,和不变,这就是加法的交换律。
(5)用字母表示定律。
在数学当中通常用字母表示定律,若用a,b分别代表两个加数,则加法交换律就可以表示为a+b=b+a(a,b代表任意数)。用字母表示更加直观、方便。
板书:加法交换律:a+b=b+a。
归纳总结1:两个加数交换位置,和不变,用字母表示为:a+b=b+a。
随堂练习:
小红有24支水彩笔,小刚有16支水彩笔,小红和小刚一共有多少支水彩笔?
答案:24+16=40(支)或者16+24=40(支)。
探究新知2:加法结合律。
情境导入:
问李叔叔这三天一共骑了多少千米?
1、理解题意。
2、解答:
方法一:按从左往右的顺序:
88+104+96。
=192+96。
=288(千米)。
方法二:观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。
即:88+104+96。
=88+(104+96)。
=88+200。
=288(千米)。
答:李叔叔这三天一共骑了288千米。
3、发现规律。
可以写成等式(88+104)+96=88+(96+104)。
归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律。
4、用字母表示定律。
如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)。
板书:加法结合律(a+b)+c=a+(b+c)。
活学活用:
有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?
68+(59+41)。
=68+100。
=168(米)。
答:三块布一共有168米。
探究新知3:加法中的简便运算。
下面是李叔叔后四天的行程。
1、理解题意。
2、观察算式特点。
师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:
115+132+118+85。
=115+85+132+118。
加法交换律=(115+85)+(132+118)。
加法结合律。
=200+250。
=450。
3、解答。
115+132+118+85。
=115+85+132+118。
=(115+85)+(132+118)。
=200+250。
=450(千米)。
归纳总结:
在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
活学活用:
答案:62+93+138。
=(62+138)+93。
=200+93。
=293(页)。
答:这本故事书一共有293页。
探究新知4:连减的简便运算。
情境导入。
一本书一共有234页,还有多少页没看?
1、理解题意。
师:已知总页数是234页,减去昨天和今天看的,就是剩下的。
2、列式子。
解法一:(1)今天看的66+34=100(页)。
(2)剩下的234—100=134(页)。
解法二:从总页数中减去今天看的34页,再减去昨天看的66页,
剩下的就234—34—66=134(页)。
3、比较发现。
比较以上解法得数是一样的,可知:从一个数中连续减去两个数,也就相当于从被减数中减去两个减数的和,在连减算式中任意交换减数的位置,差不变。
即:a—b—c=a—(b+c);a—b—c=a—c—b。
活学活用:
妈妈拿100元去超市购物,买蔬菜花了26元,买水果花了24元,还剩多少钱?
答案:100—26—24=50(元)。
拓展提升:
1、计算:1+2+3+4+5......+48+49+50。
师解析:
方法二:如果把50个数倒过来写,分别相加,就是50个51相加再除以2,即是答案。
即:1+2+3+4…、+48+49+50。
=(1+50)×(50÷2)。
=1275。
归纳总结:解决问题要动脑,这样会找到多种解决问题的方案,解答时要选择一个最简便的方法。
举一反三:
用简便方法计算:199999+19998+1997+196+95。
答案:199999+19998+1997+196+95。
=200000+20000+20xx+200+100—(1+2+3+4+5)。
=222300—15。
=222285。
归纳小窍门:当算式中的数字较大时,可以利用估算的思路,把它们都看做是和它们最接近的整百、整千、整万…、的数,计算出结果后,再减去多加的部分。
课后小结。
这节课你学会了什么呢?
a、这节课我们学习了加法运算律和加法结合律。
用字母表示为a+b=b+a;a+b+c=a+(b+c)。
b、数学运算时要选择简便运算方法,在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
课后习题。
1、计算下列算式。
138+227+17369+406+94。
答案:138+227+17369+406+94。
=138+(227+173)=69+(406+94)。
=138+400=69+500。
=538=569。
答案:187+145+113。
=(187+113)+145。
=300+145。
=445(米)。
答:这根钢丝全长445米。
板书。
加法交换律加法结合律。
a+b=b+a;a+b+c=a+(b+c)。
善于发现简单法,计算准确快又好。
加法运算定律数学教案(热门16篇)篇十一
人教版小学数学四年级下册p27——32。
教材通过李叔叔骑自行车外出旅游所行的路程引出问题,先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。
知识与能力。
使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
过程与方法。
使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。
使学生在教学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
难点:使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。
多媒体课件。
课前小游戏:比眼力。
1.谈话导入,揭示课题。
师:孩子们,谁能说一说今天我们要学习什么内容?(加法运算定律)。
你是怎么知道的?(看大屏幕上写的)。
非常好,你是个会观察的孩子。
师:在四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。加法的运算定律是什么呢?这节课我们一起来研究加法运算定律。(板书课题——加法运算定律)。
2.创设情境,提出问题。
(1)师:漫长的暑假好多人都外出旅游放松心情去了,当然李叔叔也不例外,看他是怎么去的?(出示幻灯片)。
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
(2)学生汇报自己了解的信息。
(3)根据你了解到的信息你能提出什么问题?(学生提问)。
(4)学出问题:李叔叔今天一共骑了多少千米?
(一)探究加法交换律。
1.列式计算。
师:要解决这个问题我们应该怎么算?请自己列式计算然后汇报。(40+56和56+40,如果没有学生说出56+40这种算法,教师要引导他们这样列出)。
2.两种算法不同,为什么结果是一样的?(因为都表示的是上午和下午的路程和,所以结果是一样的。)。
3.既然这两个算式的结果是一样的`,我们可以在里填上什么符号?(“=”号)。
4.像这样的算式,你们还能举出例子来吗?
(学生举例)。
5.仔细观察,这些算式有什么特点?
(两个加数没有变,只是它俩的位置交换了,和不变。)。
6.这样的算式我们能写完吗?你认为你举得例子左右两边一定相等吗?为什么?(因为无论它俩的位置怎样,都是算它们的和是多少,所以左右两边相等。)。
7.揭示规律。
(学生总结)。
(2)小结:两个加数交换位置,和不变,这叫做加法的交换律。(板书)。
8.既然像这样的算式写不完,你们能想个办法用一个算式概括加法的交换律吗?试一试。
(学生尝试)。
9.展示学生的方法。
10.确定用字母表示加法交换律,并板书。
师:由于字母表示比较简便,所以通常我们用a、b表示任意两个加数,所以加法交换律用字母表示为:a+b=b+a。(板书)。
11.对口令。
师:83+17=生:等于17+83。
57+44a+b100+6018+7535+6585+768。
12.介绍加法交换律在加法验算中的应用。
(二)探究加法结合律。
1.刚才提到李叔叔要旅行七天,下面是李叔叔前三天经过的路程,我们来了解一下。(出示情境图二)。
2.学生观察,说说了解到的信息。
3.出示问题:你知道李叔叔三天一共骑了多少千米吗?请自己先算一算。
4.展示学生的算法。
(88+104)+9688+(104+96)。
哪种算法简单,为什么?
5.我们来理一理这两种算法。
师:算法一,先算前两天骑的路程,再加第三天的路程。
算法二,先算后两天骑的路程,再加第一天的路程。这种方法简单。
师:算法不一样为什么结果一样?(因为它们都算的是三天的路程和)。
6.既然结果一样,我们可以用什么符号把这两的算式连接起来?(等号)。
7.比较下面两组算式。
68+152+4868+(152+48)。
(225+175)+67225+(175+67)。
8.让学生照样子写出几组算式,并展示。
9.观察这些算式,你有什么发现?
生:三个数相加,先把前两个数相加,或者想把后两个数相加,和不变。
(2)小结:三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。(板书)。
11.试着用符号表示加法结合律。
师:加法结合律用字母表示为:(a+b)+c=a+(b+c),a、b、c分别表示任意三个加数。
1.填一填:
(1)两个加数交换(),和不变,这叫做加法()。
(2)三个数相加,先把(),或者先把(),和不变,这叫做加法()。
(3)加法交换律用字母表示:
a+b=________。
(4)加法结合律用字母表示:
(a+b)+c=________。
2.应用学过的定律在下面()中填上适当的数。
(1)29+17=()+29。
(2)120+()=35+()。
(3)138+(62+365)=(+)+365。
(4)(+358)+()=198+(+42)。
3.连一连,再说一说每组连线的依据是什么?
63+32564+(19+81)。
87+32+68325+63。
(64+19)+8187+(32+68)。
36+78+6478+(36+64)。
4.比一比,那组算得快。
(1)(195+32)+68(2)195+(32+68)。
(205+59)+241205+(59+241)。
486+78+1478+(486+14)。
1.本节课你学会了什么?
2.请用是什么、为什么和干什么把本节课学到的知识对你的同桌说一说。
师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
加法交换律a+b=b+a。
加法结合律(a+b)+c=a+(b+c)。
加法运算定律数学教案(热门16篇)篇十二
进一步掌握乘法的运算定律,会根据题目的特征,灵活的运用乘法运算定律进行简算,提高学生应用乘法定律进行简便计算的能力。
(一)口算训练。
课本第1题。学生独立完成后校对。
(二)揭示课题。
上面这组口算25400、425等题目,你认为这些题目还在哪一类计算题中经常出现?学生回答后引出课题应用乘法运算定律的简便计算练习。通过本节课的练习,要进一步搞清三个运算定律的意义,并灵活运用乘法运算定律进行计算。
(三)分类练习。
乘法运算定律有哪些?用文字叙述并用字母表示,回答后。
完成书本第二题。
完成后四人小组交流批改,教师巡回检查。
2、运用运算定律进行简便计算。
(1)应用乘法交换律和结合律的简便计算。
书本第3题,用简便方法计算。
先观察,提问:这组题目的简便计算要应用什么定律?把。
怎样的数结合在一起计算比较简便?中间两题该怎么办?学生回答后,同桌合作。
(2)应用乘法分配律为主的简便计算。
书本第4题,用简便方法计算。
观察,根据题目的不同特征,你能把第4题分成不同的几。
类?学生回答,教师板演。同时说明应用什么运算定律进行简算。特别强调4(2530)不要与运用乘法分配律进行简算的题目相混淆,教师补充一道对比题:4(25+30)。
接着由学生按分类的顺序进行计算,完成快的同学自批后再列举同一类中不同形式的题目。
全部学生完成后校对,同时请编题的同学汇报。如;
第一类:24125第二类:9956。
第三类:125(8+10)第四类:19956+56。
每类中各选择1道典的题目,由学生完成。
3、综合练习。
(1)课本第5题,怎样简便就怎样算。
先观察、质疑:上面6个题目中你对哪些题目的解法还有。
疑问?同学之间相互质疑、释疑,教师适当引导。然后计算各题。全部学生完成后校对。
(2)用简便方法计算下列各题。
333774+113666999999+999。
学生根据板演讲解思路与理由。教师反馈出示1442+1458,思考:把这题改编成第1题的形式。(2821+1458或1442+7116)。
4、应用题。课本第6题。
(四)总结。
(一)作业《作业本》[15]。
加法运算定律数学教案(热门16篇)篇十三
一、判断题。
1、27+33+67=27+100。
2、125×16=125×8×2()。
4、先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。()。
5、1250÷(25×5)=1250÷25×5()。
二、选择(把正确答案的序号填入括号内)(8分)。
1、56+72+28=56+(72+28)运用了()。
a、加法交换律b、加法结合律c、乘法结合律d、加法交换律和结合律。
2、25×(8+4)=()。
a、25×8×25×4b、25×8+25×4c、25×4×8d、25×8+4。
3、3×8×4×5=(3×4)×(8×5)运用了()。
a、乘法交换律b、乘法结合律c、乘法分配律d、乘法交换律和结合律。
4、101×125=()。
加法运算定律数学教案(热门16篇)篇十四
1、通过复习熟练掌握四则运算的五大定律和两大性质。
2加法结合律:
1乘法交换律:
2乘法结合律:
3乘法分配律:
减法的运算性质:
除法的运算性质:
简算。
(1)628+182+472+18(2)624-85-15。
(3)45×11×2(4)96×101-96。
(5)3400÷25÷4(6)723-(123+159)。
一、填空我最棒。
1、26+285+315=26+(285+315),此题运用了()律。
2、7×4×6×25=7×6×(4×25),此题运用了()律,也运用了()律。
3、1÷(12×25)=1÷12÷25,这样计算是根据()。
简算。
3、25×164、88×125。
加法运算定律数学教案(热门16篇)篇十五
1、通过尝试解决实际问题,观察,比较发现并概括加法交换律。
2、初步学习用加法运算定律进行简便计算,并用来解决实际问题。
3、提高观察、概括能力和语言表达能力。
初步学习用加法运算定律进行简便计算,并用来解决实际问题。
课件
(一)谈话导入,
孩子们你们知道我们班上有多少小女孩?多少小男孩?那么我们班上一共有多少个孩子?
学生列式,师板书
(二)呈现事实,形成问题
1、出示准备题:
(1)27+73(2)37+58
73+27 58+37
2、学生计算得数。
3、请学生观察两组算式,说说有什么发现?
投影书上的主题图,
你搜集到了什么信息?
今天李叔叔一共骑了多少米?根据学生回答板书:40+56=96千米
56+40=96千米
和前面的两个例子比较你发现了什么?、
4根据学生回答板书:猜想――两个数相加,交换加数的位置它们的和不变。
既然和不变,每组算式可以用什么符号连接呢?(=)
5、问题:这个猜想正确吗?
(三)验证猜想,形成结论
1、验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。
让学生举例,
如35+20=20+35等等让学生多说
同桌互说
学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。
2、同学自己设计一组式题验证,小组交流结果,汇报结论。
3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例子
全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。
例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)
(1)口答列式:476+518518+476
为什么这样列式?
(2)判断:得数会相同吗?
(3)计算结果,得出结论:476+518=518+476
在加法中,交换加数的位置,和不变。
4、揭题:这就是我们今天要学习的“加法交换律”(板书)
5这种规律在其他运算中有吗?学生质疑,验证。在这个环节中有出现个别代表一般的给予举例纠正。
学生自学书本、质疑。
6、小结:
(1)什么是加法交换律?
用字母a、b表示加法交换律。板书:a+b=b+a
(四)应用成果,巩固新知
1、学习加法交换律的最终目的是用。
问:验算加法,我们用什么方法?根据什么?
2、“练一练”1,先计算出得数,再用加法交换律进行验算。
问:验算方法运用什么运算定律?
3、“练一练”
(1)分组完成。(每组一生板演,比赛形式进行)
(2)指名说出验算方法和根据。
4、放录音、做游戏――“我该在什么位置”
(1)将卡片470、880、1013、214、58、58发给六个同学。
(2)伴随音乐,寻找自己的位置,并贴上。
(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。
(五)反思过程,学会学习
3、质疑:满足“和不变”这一要求,有没有其他可能?
课后习题
完成课后练习题。
加法运算定律数学教案(热门16篇)篇十六
教学内容:教科书第74页第5题,练习十七的第7一12题。
教学目的:使学生进一步掌握加法和乘法的运算定律,会应用运算定律进行简便运算。
教学过程():
随着学生的回答,教师板书:
加法乘法。
交换律:a+b=b+aa×b=b×a。
结合律:(a+b)+c=a+(b+c)(a×b)×c=a×(b×c)。
分配律:(a+b)×c=a×c+b×c。
然后引导学生对它们之间的联系和区别进行横向比较。
“加法交换律和乘法交换律有什么相同点和不同点?”(相同点:都是把两个数交换位置,运算结果相同;不同点:运算方法不同。)。
“加法结合律和乘法结合律有什么相同点和不同点?”(相同点:都有三个数,不管相邻的哪两个数先进行运算再同另一个数运算,结果都不变;不同点:运算方法不同。)。
通过比较,使学生明确加法和乘法的交换律、结合律,表达式类似,只是运算方法不同。
2.练习。
(1)做第81页的第5题。
让学生看一看这道题中的算式各符合哪个运算定律,然后分别填在横线上。
(2)做练习十七的第8题。
根据运算定律给每个算式填上适当的`运算符号或数,订正时,说一说依据。
1.让学生做下面的题,并说一说怎样做简便,应用了什么运算定律。
82十78十226×35×50。
136十68十64125×80×50。
25十43十75十5745×4×25×20。
271十53十47十2962×7十38×7。
2.让学生口算下面各题,并说一说是怎样算的。
469十98437—305。
469一98324—48—52。
3.让学生做练习十七的第9题,指名说一说简便计算的依据。
2.做练习十七的第10一12题。
(1)第10题,让学生独立做,集体订正时,说一说运算顺序。
(2)第11题,独立做,集体订正。
(3)第12题,让学生先自己做。其思路是:先求出第一个小长方形木板的面积,然后求它的宽,最后根据边长的特点分割。
2.对学有余力的学生让他们做练习十七的第13一14题和第81页的思考题。
思考题,让学生自己找规律填数。