教学工作计划可以提前安排好各个教学环节的时间和内容,确保教学进度的合理安排。以下是小编为大家整理的教学工作计划范文,供大家参考和借鉴。
北师大版七年级数学教案设计(汇总17篇)篇一
1、用列举法(列表法)求简单随机事件的概率,进一步培养随机概念。
2、用画树形图法计算概率,并通过比较概率大小作出合理的决策。
3、经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
4、通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
运用列表法和画树形图法求事件的概率、
运用画树形图法进行列举,解决较复杂事件概率的计算问题、
2课时。
一、导入新课。
填空:(1)掷一枚硬币,正面向上的概率是、
(2)掷一枚骰子,向上一面的点数是3的概率是、
二、新课教学。
例1同时抛掷两枚质地均匀的硬币,求下列事件的概率:
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上、一枚硬币反面向上、
教师引导学生思考、讨论,最后得出结论、
北师大版七年级数学教案设计(汇总17篇)篇二
3.培养学生的观察、归纳与概括的能力.
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义――代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“”号排列出来.
解:在数轴上画出表示-a、-b的点:
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
北师大版七年级数学教案设计(汇总17篇)篇三
1.会比较两个小数的大小以及将几个小数按大小顺序排列。
2.在比较小数大小的过程中,发展推理能力。
会比较两个小数的大小以及将几个小数按大小顺序排列。
创设少年演讲比赛的情境,比较两个同学的得分谁的高一些。
1.小组讨论:9.87和9.90哪个数大,并说明自己是怎样想的。
2.汇报:通过全班的讨论明确,从数位来考虑,两个数的整数部分相同,就看十分位,十分位上大的那个数就大。
“张华比李明表现好,但不能得10分”让学生说说这句话的意思,明确张华的分数在9.90和10之间。
让学生自己确定一个分数,然后将三个人的分数按顺序排列。
全班交流、归纳出比较小数大小的'方法。
第1题:先让学生在直线上找到9.8和10.1的位置,从直线图上很容易看出结果,体会到直线右边的数一定比左边的数大。
第4题:这个练习进一步加深学生对位值制的理解。让学生先独立思考几分钟,再在小组中交流各自的想法。
这个游戏有利于增进学生对小数相对大小的具体感受。不要求学生用小数减法计算出准确结果。
练一练第9页2、3。
北师大版七年级数学教案设计(汇总17篇)篇四
1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示。
2.会用计算器求算术平方根。
3.了解无限不循环小数的特点。
数学思考。
1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想。
解决问题。
1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维。
2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。
情感态度。
1.通过学习算术平方根,认识数学与人类生活的密切联系。
2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。
重点:算术平方根的概念,感受无理数。
难点:探究的大小的过程。
活动1创设情景,引入算术平方根。
2003年10月16日,我国进行首次载人航天飞行取得圆满成功。中华民族探索太空的千年梦想实现了。宇宙在脱离地球轨道进入正常运行轨道的速度要满足一个条件,即介于第一宇宙速度与第二宇宙速度之间,第一宇宙速度和第二宇宙速度分别满足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):
小欧还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:
面积191636。
边长1346。
上面的问题,实际上是已知一个正数的平方,求这个正数的'问题。
一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。
规定:0的算术平方根是0。
活动2通过一些简单例题,进一步了解算术平方根。
1、你能求出下列各数的算术平方根吗?
2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。
3、16的算术平方根等于________。
4、的值等于_________。
5、的算术平方根等于_________。
活动3动动脑,动动手,探究的大小。
你能用两个面积为单位1的小正方形拼成一个大正方形吗?
回答下列问题。
(1)你所得的新正方形的面积是多少?
(2)新正方形的边长是多少?
讨论:
你知道有多大吗?
的估算:
如此进行下去,可以得到的近似值,还可以发现是一个无限不循环小数。
活动4财富大统计。
你认为小欧要解决他参加美术作品比赛中遇到的问题。
北师大版七年级数学教案设计(汇总17篇)篇五
3.能用科学技术法表示绝对值较小的数。
对较小数字的信息作合理的解释和推断,感受较小数,发展数感,用科学记数法表示绝对值较小的数。
1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。
2.什么叫科学记数法?把下列各数用科学记数法来表示:
(1)2500000。
(2)753000。
(3)205000000。
出示“议一议”前三幅图(让学生阅读,思考)。
教师提出问题:一百万分之一有多少呢?提示本节内容,导入课题“认识百万分之一”。
1.出示投影:“议一议”
珠穆朗玛峰是世界第一高峰,它的海拔高度约为8844米;
(1)让学生计算珠穆朗玛峰高度的千分之一是多少?相当于几层楼的高度?
(2)让学生计算珠穆朗玛峰高度的百万分之一是多少?并直观地描述这个长度。
2.出示投影:“议一议”
(1)让学生计算出天安门面积的百分之一的面积,并用语言描述。
(2)让学生计算出天安门面积的`万分之一及百万分之一的面积,并用语言描述。
在日常生活中除了会接触到较大的数,同时也会接触到较小的数;通过刚才大家的计算,交流体会,感受到一个物体的高度或面积的百万分之一的大小,使大家认识了百万分之一。
北师大版七年级数学教案设计(汇总17篇)篇六
总复习(一)。
教学目标:
1、复习整十、整百、整千数乘一位数及两位数的口算方法及一位数除整十、整百、整千及两位数的口算方法,能够迅速、准确的计算。
2、进一步掌握一位数乘两、三位数,一位数除两、三位数的笔算乘除法。
3、巩固两步计算式题的运算顺序,能够准确地进行计算。
4、巩固常用的计量单位以及相互之间的进率关系,进一步建立吨、千克、克的概念。
教学重、难点:
1、通过复习,使学生熟练掌握计算方法,提高计算的速度和准确性。
2、通过复习,使学生对所学的计量单位进行回顾和整理;能够采用比较法、排除法等方法结合实际,正确使用计量单位。
3、通过复习,激发学生自己整理知识的兴趣,加深对数学的喜爱,使学生更加乐于学习数学。
教学设计:
1、谈话激趣:
同学们,到今天为止,我们三年级上学期的新课程全部结束了。从这节课开始,我们将对本学期所学过的知识进行回顾整理。到了现在,我们比一比,看一看,哪位同学能帮助其他同学进行复习巩固。看谁最认真,做得最好!
2、整理回顾口算方法:
(1)出示口算卡片,让学生利用开火车形式快速计算。
(2)强化口算方法:指名说出204×3和408÷4的口算方法。
(3)计时训练:我们开始一个小竞赛,看谁做的又对又快。请同学们打开书看总复习的第1题,准备好,“开始!”交流,订正。
3、回顾整理笔算的方法:
(1)口算同学们做得又对又快,笔算是不是也掌握得非常好呢?书上的第5题的算式。
(2)交流,评价。
4、整理回顾两步计算式题。
(1)在以前我们学生的两步计算试题中,你学到了什么知识?
(2)试着做一做第9题。
(3)全班订正。
(4)出示改错题:判断下列各题计算是否正确,为什么?
5、复习常用的计量单位。
(2)指名回答,师板书:
时间单位:年、月、日。
质量单位:克、千克、吨。
(3)请同学们自己完成第2题。填完后再小组内进行交流。
(4)全班订正。
(5)做第3题。
6、拓展交流:自己再把今天复习的相应的单元内容看一看,有没有疑难问题,可以询问老师或其他同学。
板书:常用计量单位:1年=12个月。
1吨=1000千克。
1千克=1000克。
教学反思:
总复习(二)。
教学目标:
1、能够根据已知的信息,解决实际问题,进一步掌握解题方法。
2、通过复习,提高学生用数学解决实际问题的能力。
3、通过复习,对已知信息能够进行正确处理,能够用不同的方法解决实际问题。
教学重、难点:
1、在复习的过程中,注重学生之间的交流合作,会根据具体的问题提出相应得解决办法。
2、展示自己的思维过程,进一步训练学生解决实际问题的能力。
教学设计:
一、情境创设。
激趣谈话:
同学们,你们有谁去过科技馆?门票是多少钱呢?
春游的时候我们打算去参观科技馆。我想请你们算算有关门票的问题,行不行?
二、巩固探究。
1、第6题:谁来把题目读一读?这道题中都告诉了我们什么信息?
2、刚才同学们帮老师解决了买门票的问题,还请同学们帮老师解决一个买书的问题。读题,解决。
3、同学们,在前段时间,我校组织了一次“爱心助学”活动,为贫困山区的小伙伴捐款,你捐了什么?现在老师这有一道关于三年级学生捐款的信息。
出示第10题,自己读一读题,看一看从题中你知道了什么信息?
自己解答,全班交流订正,说出是怎么解的,先求什么?再求什么?
1、下面,我们一起到商店去购物好不好?
引导学生看图第15页,说一说从图中你知道了什么?
根据题中所提的“能买几个杯子”这个问题,你能根据图中的信息,编一道应用题吗?
先自己想一想,然后在小组内互相说一说。
如果商店里的这些商品让你自己选择,100元钱想买什么东西?能买什么?
交流,纠正。
交流,解答,纠正。
6、解决完了汽车的问题,我们来看火车的问题。
出示第8题,这道题你知道了什么已知条件?所求问题时什么?
要求火车平均每小时行多少千米,必须知道哪两个条件?
三、拓展实践,总结:在这节课中,我们复习了什么知识?要注意什么问题?
四、作业:作业本上的作业。
教学反思:
总复习(三)。
教学目标:
1、能够辨认从正面、侧面、上面观察到的立体图形的形状,具有一定的空间观念。
2、复习巩固长方形的周长、正方形的周长的计算办法,能够准确进行测量并求周长。
3、利用周长的相关知识,能够解决实际的数学问题。
4、通过动手操作,使学生进一步获得对简单几何体的直观经验。
5、在交流的过程中回忆求周长的计算方法,感受计算方法的多样性,提高学生的认知水平。
教学重点:激发学生学习数学的兴趣。
教学难点:感受计算方法的多样化,提高学生的认知水平。
教学设计:
一、创设情境。
2、除了学习观察立体图形,我们还学习了求什么图形的周长?
今天这节课我们就一起来复习有关图形方面的知识。
二、巩固探究。
1、复习观察立体图形。
交流,订正。
2、复习周长的计算方法。
什么叫周长?怎样求长方形的周长?正方形的周长又该怎么求呢?
自由完成第12题,汇报订正。
还是用这根铁丝围成一个正方形,这个正方形的周长是多少?
通过刚才的操作,你发现了什么?
4、刚才我们又是动手操作,又是测量计算,累了吧?我们一起到足球场去轻松一下吧!看!这就是我们将要去的足球场。出示第14题。
自己看图、读题,想一想,在这道题中都告诉了我们什么信息?
这道题一共让你求出几个问题?会不会解答?
做完这道题,你有什么想法吗?
三、拓展实践。
我们再独立解决几个实际问题:
1、足球场是个长方形,长120米,宽95米。李林绕着足球场跑了3圈,跑了多少米?
3、小结:这节课,我们复习了什么内容?
四、作业:作业本上的作业。
板书设计:
总复习。
立体图形求周长。
长方形的周长。
正方形的周长。
教学反思:
总复习(四)。
教学目标:
1、继续复习有关年、月、日的知识,能够正确地观察日历,回答问题。
2、复习可能性的相关知识,进一步感受到事件发生的可能性是不确定的,事件发生的可能性有大有小。
3、复习有关搭配的知识,能够按照题意进行正确搭配。
4、能够根据已知信息,解决实际问题。
教学重、难点:通过复习加强巩固,进一步训练学生解决实际问题的能力。
教学设计:
一、创设情境。
在以前的复习中,我们都复习了哪些知识?
本学期我们学的内容除了刚才说到的,你认为还有哪些知识我们应该再复习整理?
我们一起来整理回顾这些内容,看谁解决这样的实际问题最棒!最棒的同学我们可是有奖励的!
我们一起来比一比、赛一赛好吗?
二、巩固探究。
1、回顾整理有关年、月、日的知识。
同学们,你还记得有关年、月、日的哪些知识?
出示第16题:一年365天,合几个星期零几天?
请同学们自己试着做一做。
谁来说一说你是怎样想的?
2、解决实际问题:
出示92页第18题的图片及文字。
请同学们认真看图,谁能说一说这幅图是什么意思?告诉了我们什么?
你是怎样设计住房方案的?
3、复习“搭配中的学问”
出示第20题:我们刚才解决了住宿问题。现在我们在一起来解决穿衣的问题好不好?
这是我们学过的搭配中的学问。你能不能自己试着解决呢?
如果解决得好、搭配得棒,我们将评选它为“出色设计师”。
自己解决,评选“出色设计师”。
4、回顾整理“可能性”
出示第19题,指名读题,自己解答,指名回答。
5、整体回顾:
在这一学期中,你学到了什么知识?
你还有什么想知道的问题?
三、小结:这节课,我们复习了什么知识?
四、作业:作业本上的作业。
教学反思:
北师大版七年级数学教案设计(汇总17篇)篇七
教学目标:
1、进一步掌握除法的简便算法。
2、能正确、灵活地进行计算。
3、通过练习,提高学生思维的灵活性。
教学重点:进一步掌握除法的简便算法。
教学难点:能具体问题具体分析、灵活地进行计算。
教学过程:
一、引入。
上节课我们复习、整理了除数是两位数的除法,这节课我。
们继续来复习除数是两位数的.除法。
二、复习。
1、回忆除数是两位数的除法是怎么进行简便计算的?进行简便算法时要注意什么?
2、全班交流:个别汇报。
当一个两位数可以分解为两个一位数相乘时,可以把两位数除法改为除数是一位数的连除式题。
要注意:不是所以的题目都可以这样的,有些题目这样并不能很简便,做时要灵活运用。
北师大版七年级数学教案设计(汇总17篇)篇八
根据学生的学习内容、新课程理念和认知水平,特制定如下目标:
(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点。
(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析。
我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析。
枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。
四、教学形式和课前准备。
本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。
五、教学过程分析。
教学过程设计意图说明。
新课引入。
(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!
探究新知活动一:
阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
学生阅读资料,通过小组合作、讨论的形式完成活动一。
活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)。
活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。
课堂小结:
1.当前水资源状况,
2.节约水资源带来的价值,
3.节约水资源的办法。
布置作业。
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。
通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!
来源于同学们身边的数据更有说服力,同时让同学感受到节水应从我做起。
自由发言,各抒己见;把数学和生活联系起来,是学生体会到学有所用,体会到数学的应用价值。
引导学生思考、交流、梳理所学知识,培养理性思维能力,加深对资源现状的理解。
学会整理、归纳所学知识;分析课题报告。
六、自我评价。
这个课题学习,应该用比较长的时间,运用所学知识对生活问题进行学习、探究。这需要学生的充分准备,然后可安排学生一起进行探讨、交流。在多媒体教室进行这个课题学习,可以充分调动学生的学习兴趣,发挥学生的各方面才能,培养学生合作学习的能力。
北师大版七年级数学教案设计(汇总17篇)篇九
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
北师大版七年级数学教案设计(汇总17篇)篇十
教学内容(课题)。
教学重点引导学生自地将所学到的知识进行整理,归纳和反思。
教学难点引导学生自地将所学到的知识进行整理,归纳和反思。
教学准备。
教学时数2课时。
教学过程备注栏。
一,你学到了什么?与同学进行交流。
1,第一单元的内容。
学生先小组交流,然后师生共同讨论知识整理的过程。
分数乘法的意义,分数乘法的计算方法,解决简单的分数乘法应用题。
2,第二单元的内容。
长方体,正方体的特点,长方体,正方体的展开图,长方体,正方体的表面积的计算方法。
3,第三单元的内容。
除法的意义,除法的计算方法,倒数的含义,用方程解决问题,算术方法解决除法问题。
二,决问题。
1.第1题,学生独立完成,教师集体对答案,表扬做全对的同学。
2.第2题,学生独立完成,让学生说说是怎样想的?
3.第3题,学生先独立完成,要向学生讲清怎样才知道10包纸巾的长、宽、高。师生共同讨论。
4.第4题,引导学生从不同的角度思考解决问题的方法,也可引导学生通过画图来理解题意。
5.第5题,首先鼓励学生看懂图意,然后分析图中的数量关系,列出方程解决问题:2/9ⅹ=140。
6.第6题。鼓励学生理解题意,然后分析题目中的数量关系,在此基础上独立解决问题。
7,第7题。学生独立完成,教师集体讲评。
8.第8题。小组交流,然后师生共同完成。
9.第9题。以统计表的形式出现复习分数乘法,但是很容易解决。先让学生独立解决,然后说一说题意的策略。
三.总结。
通过这两单元的整理与复习,你学到了什么?
作业设计。
板书设计。
教学后记。
教学内容(课题)数学与生活(粉刷墙壁)。
教学目标和要求1.综合应用图形的面积、计算等知识解决生活的问题,增强应用数学的意识。
2.发展实际调查、解决问题的能力。
教学重点解决问题的能力。
教学难点解决问题的能力。
教学准备。
教学时数2课时。
教学过程备注栏。
一.要粉刷教室的墙壁,我们需要调查哪些数据。
(一),测量计算。
1.小组合作一。
(1),教室前后黑板共多少块?分别测量每块黑板的刹那感和宽。
(2),教室左右两面墙共有多少个窗户,多少个门?分别测量每个窗户的长和宽,每个门的长和宽。
2.小组合作二。
(1),左右两面墙(除去窗户和门)的面积分别为()平方米和()平方米。
(2),如果想粉刷除去地面以外的五面墙,那么需要粉刷的墙壁面积总和约为()平方米。
(二),购买材料。
某种涂料分大桶和小桶两种规格包装。
大桶:容升6升,57.00元/桶。
小桶:容升4升,40.00元/桶。
(1),根据经验,第一遍粉刷时,每平方米约用涂料0.5升,此时粉刷教室共需涂料约()升。
(2),粉刷墙壁时,一般需要刷两遍。按照工人师傅的估计,刷第二遍时需要涂料约升()。
(3),刷两遍共用涂料约()升,买()打通和()小桶最省钱,总费用约()元。
二,练一练。
1.第1题。启发学生思考,工人师傅在用涂料粉刷墙壁时,会出现什么样的情况,以帮助学生理解实际粉刷时会出现的“损耗”的原因。
2.引导学生发现打通包装的涂料便宜,因此尽量买打通的,但不同时也要根据需要的量,不要浪费太多。因此可以利用列表的形式出现不同方案的价钱,并选出最省钱的方案。
作业设计。
板书设计。
教学后记。
教学内容(课题)折叠。
教学目标和要求1.经历折叠和展开的过程,体会立体图形和它的平面展开图的关系,发展空间观念。
2.能正确判断平面展开图所对应的简单立体图形。
教学重点判断平面展开图所对应的简单立体图形。
教学难点判断平面展开图所对应的简单立体图形。
教学准备。
教学时数2课时。
教学过程备注栏。
一,想一想。
出示教科书第38页的图形,并让学生准备这样的图形。按虚线折叠成一个封闭的立体图形,它的形状像什么?(学生小组交流讨论,合作,教师引导学生先想象这个平面展开图折叠以后像什么。)。
二,画一画。
动手操作,将附页3图1剪下,按虚线折叠后,形状是一座小房子。
三,做一做。
通过折叠后的小房子来确定天窗和门的位置,然后在平面图上画出来(天窗可以在平面图中上数第二个或第三个长方形内,门可以在第一个或第四个长方形内,也可以在两边的五边形内。)。
根据学生的实际情况,把这个问题进行拓展,首先将附页3图1中的各个图形标上号码,长方形从上到下依次为1,2,3,4,5,左边的五边形为6号图形,右边的为7号图形。然后,提出挑战性的问题:(1)与图形6相对的声纳个图形?(2)和图形1相对的是哪个图形?借助想象活动,发展学生的空间观念。
四.练一练。
1.第39页第1题。
引导学生进行想象,作出最初的判断,然后通过动手操作,讨论并交流,得出结论。
2.第39页第2题。
进一步让学生体会立体图形和它的平面展开图之间的对应关系,有多余信息。学生独立完成本题,教师允许学习有困难的学生通过动手操作解决问题。
作业设计。
板书设计。
教学后记。
北师大版七年级数学教案设计(汇总17篇)篇十一
2.初步培养学生观察、分析及概括的能力;。
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例。
公式。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
北师大版七年级数学教案设计(汇总17篇)篇十二
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
正确分析实际问题中的不等关系,列出不等式组。
建立不等式组解实际问题的数学模型。
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
北师大版七年级数学教案设计(汇总17篇)篇十三
3,体验分类是数学上的常用处理问题的方法。
正确理解分类的标准和按照一定的标准进行分类。
正确理解有理数的概念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。
“统称”是指“合起来总的名称”的意思。
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。
创新探究。
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
(1)必做题:教科书第18页习题1、2第1题。
(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
北师大版七年级数学教案设计(汇总17篇)篇十四
教学目标。
1.通过实验观察描述根的生长和枝条发育的过程。
2.初步学会运用测量的方法探究根生长最快的部位。
3.运用调查、访谈等的方法与他人交流,了解无机盐与植物生长的关系。
4.通过植株生长过程的学习向学生渗透事物发展变化的观点。
重点和难点。
1.测量数据的方法、数据的分析和处理。
2.根尖临时装片的制作及观察。
教学设计。
根靠根尖向前生长。
方案一:课外小组的同学展示并描述2种根靠根尖向前生长的演示实验的结果,汇报本组探究根尖生长的实验方案,包括如何选材和画线、观察记录、结果分析等。
方案二:课外小组的同学在实物投影上展示并描述2种根靠根尖向前生长的演示实验的结果,汇报本组探究根尖生长的实验方案,如何选材和画线,观察记录、结果分析等。
方案三:生物课外小组的同学在实物投影上向全班展示切去根尖的幼根不向前生长,而未切去根尖的幼根却伸得很长。
根生长最快的部位:伸长区。
方案一:各小组汇报交流测量的结果。讨论:(1)各小组的测量数据出现差异的原因?如何处理?(2)如果探究活动只有你一个人做,只用一株幼苗够不够?为什么?互相交流,解答疑惑。
方案二:各小组以实验报告的形式,汇报交流各组探究的结果,并进行分析讨论,各组之间进行评议。评议内容包括:设计是否合理、装置是否简便易行、步骤是否严谨、记录是否详实、结果分析是否科学等。
根的生长:
(1)分生区:增加细胞的数量。(2)伸长区:增大细胞体积。
方案一:透过培养皿的玻璃,观察餐巾纸下面白色的根及毛茸茸的根毛,根尖顶端_发亮的是根冠,再用显微镜观察根尖的纵切片。
方案二:观察培育的幼根后,动手制作根尖的临时装片,低倍显微镜下观察根尖的4部分。
方案三:观察培育的幼根后,动手制作根尖的临时装片,低倍显微镜观察,记录观察的结果。在此基础上观察根尖永久纵切片。
方案四:观察根尖的结构挂图,区分根尖的4部分细胞的数量和体积的大小。
提出观察的提纲,引导学生实验观察后找出很伸长最快的部位。
枝条是芽发育成的。
方案一:观察动态展示芽发育成枝条过程的cai课件,并进行描述。
方案二:演示抽拉活动教具,使抽象问题具体化并仔细观察,最后概括描述出芽发育成枝条的过程。
方案三:观察教师板画的芽发育成枝条的相对应结构示意图,并进行描述。
方案四:先观察动态展示芽发育成枝条的过程的cai课件,然后在黑板上将叶芽的各分与发育成枝条的相应部分的图用粉笔连接起来。
提出问题,引导观察和探究。
用彩色粉笔在黑板上画出芽的结构及相应的枝条图。提供叶芽的结构和枝条的图各一幅,组织学生连出相对应部分。
植株的生长需要无机盐:
1.需要量最多的是含氮的、含磷的、含钾的无机盐。
2.缺少无机盐时的症状:
3.合理施肥的意义。
方案一:观察甲、乙、丙、丁4瓶中分别培养的菜豆正常叶和缺少氮、磷、钾的叶片,描述现象并诊断病因。
方案二:观察生长正常的叶和缺少氮、磷、钾的叶片的录像,描述现象并诊断病因。
方案三:看书自学,观察教师出示的几株幼苗,进行诊断,鉴别幼苗的病因。
方案四:观察课本插图,进行描述,联系实际分析生活中的现象。
分析生活中的各种做法,树立环保的的意识。
北师大版七年级数学教案设计(汇总17篇)篇十五
2.使学生掌握求一个已知数的;。
3.培养学生的观察、归纳与概括的能力.
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
一、从学生原有的认知结构提出问题。
二、师生共同研究的定义。
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与。
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例变式练习。
例1(1)分别写出9与-7的;。
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的。
1.当a=7时,-a=-7,7的是-7;。
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结。
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业。
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动。
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“”号排列出来.
分析:由图看出,a1,-1。
解:在数轴上画出表示-a、-b的点:
由图看出:-a-1。
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
北师大版七年级数学教案设计(汇总17篇)篇十六
2.内容解析。
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.
二、目标及其解析。
1.目标。
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.
2.目标解析。
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.
三、教学问题诊断分析。
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.
四、教学过程设计。
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.
问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3.
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.
教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.
追问2:根据这个规律,下面的两个积应该是什么?
3×(-2)=,
3×(-3)=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
设计意图:让学生自主构造算式,加深对运算规律的理解.
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓励学生模仿正数乘负数的过程,自己独立得出规律.
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)×3=,
(-2)×3=,
(-3)×3=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.
问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追问1:按照上述规律填空,并说说其中有什么规律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.
问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.
学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.
设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.
例1计算:
(1)。
;(2)。
;(3)。
学生独立完成后,全班交流.
教师说明:在(3)中,我们得到了。
=1.与以前学习过的倒数概念一样,我们说。
与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.
追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.
小结、布置作业。
请同学们带着下列问题回顾本节课的内容:
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.
(4)你能举例说明符号法则“负负得正”的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结.
作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.
五、目标检测设计。
1.判断下列运算结果的符号:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2计算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
设计意图:检测学生对有理数乘法法则的理解情况.
北师大版七年级数学教案设计(汇总17篇)篇十七
学习目标:
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想。
学习重点:
用正.负数表示具有相反意义的量。
学习难点:
实际问题中的数量关系。
教学方法:
讲练相结合。
教学过程。
一.学前准备。
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题。
问题2:(教科书第4页例题)。
先引导学生分析,再让学生独立完成。
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国―6.4%,德国1.3%,
法国―2.4%,英国―3.5%,
意大利0.2%,中国7.5%.
三.巩固练习。
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四.阅读思考1页。
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五.小结。
1.本节课你有那些收获?
2.还有没解决的问题吗?
六.应用与拓展。
1.必做题:
教科书5页习题4.5.:6.7.8题。
2.选做题。
1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.