通过写心得体会,我们可以把零散的思绪整理出来,形成有序的观点和见解。以下是一些发人深思的心得体会,希望可以引起大家对于自身成长和发展的思考和反思。
最热高等数学学后心得(案例22篇)篇一
第一段:学习动机与目标(引言)。
高等数学是一门对于大部分大学生来说充满挑战的学科。作为一名大学生,我对高等数学学习非常重视,因为它是我专业学习的基础课程之一。在学习高等数学的过程中,我经历了许多辛苦和困惑,但也从中收获了很多。在这篇文章中,我将与大家分享我的高等数学学习心得体会。
第二段:规划和时间管理(学习方法和技巧)。
在面对高等数学这门课程时,我意识到规划和时间管理是非常重要的。高等数学包含了大量的知识点和公式,因此我制定了一个学习计划,将每个知识点分配到不同的时间段,并给自己留出足够的时间进行复习和巩固。我还学会了合理安排每天的学习时间,将重点放在疑难问题上,以便更好地掌握知识。
第三段:找到适合自己的学习方式(学习方法和技巧)。
在高等数学学习的过程中,我发现找到适合自己的学习方式能够提高学习效果。有些人更适合通过听讲座和课堂上的互动来学习,而我更喜欢通过自学和解题来掌握知识。我经常和同学们一起组队讨论问题,通过交流和互帮互助来解决难题。这种学习方式不仅巩固了我的知识,还提高了我的解题能力和思维灵活性。
第四段:克服困难与坚持学习(学习态度与人生观)。
高等数学是一门需要耐心和恒心的学科。在学习过程中,我遇到了许多困难和挫折,但我相信只要坚持下去,就一定能够克服这些困难并取得好成绩。我时常重复着“努力就会有回报”的信念,坚持每天都学习一段时间高等数学,无论是通过自学、参加辅导班或向老师请教,我都不放弃任何机会来提高自己的数学水平。
第五段:从高等数学中的应用反思(学科价值与人生思考)。
通过学习高等数学,我不仅掌握了数学知识,更培养了自己的逻辑思维和问题解决能力。高等数学课程中的许多概念和方法在实际生活中都有广泛的应用。数学是一门实用的学科,它不仅帮助我们理解世界的运作方式,还能培养我们的逻辑思维和抽象思维能力。通过高等数学的学习,我深深体会到数学不仅仅是个工具,更是一门能够引导我们思考和解决问题的科学。
总结:
通过高等数学的学习,我不仅掌握了基本概念和方法,也培养了自己的学习方法和态度。我发现规划和时间管理对于高等数学学习非常重要,找到适合自己的学习方式能够提高学习效果。在困难和挫折面前要坚持学习,相信努力会有回报。最重要的是,高等数学的学习不仅可以提高我们的数学水平,还能帮助我们培养逻辑思维和解决问题的能力。通过高等数学的学习,我对数学这门学科有了更深入的理解,也对自己的学习和未来充满了信心。
最热高等数学学后心得(案例22篇)篇二
随着社会发展和科技进步,数学已经成为现代社会不可或缺的一门科目。作为一名大专学生,我对于高等数学的学习有了更深刻的体会和心得。在学习过程中,我深刻体会到高等数学的重要性和实用性,它不仅仅是一门知识学科,更是一种思维方式和解决问题的方法。在学习高等数学的过程中,我积累了很多的学习方法和经验,并且收获了不少的个人成长。在本文中,我将分享我在大专高等数学学习中的心得体会。
首先,一开始我对于高等数学学习心存疑虑,认为它是一门枯燥无味的学科。然而,随着学习的深入,我慢慢意识到高等数学的魅力所在。高等数学是一门极具逻辑性的学科,它通过一系列的公理和定理来建立起自己的体系,从而构建起一个严密而完整的数学世界。它不仅仅是一种工具,更是一种数学思维的拓展。在学习过程中,我通过数学公式和定理的推导,培养了自己的逻辑思维和分析问题的能力。这不仅在学习中有很大的帮助,也对于解决实际问题起到了积极的作用。
其次,在学习高等数学的过程中,我体会到了数学学科的复杂性和抽象性。与初等数学相比,高等数学的概念更加抽象,内容更加复杂。在学习高等数学的时候,我发现需要具备一定的数学基础和逻辑能力才能更好地理解和掌握其中的知识点。因此,我注重在学习初等数学的同时,加强了自己的数学基础知识的学习,如代数、初等函数等。同时,我还养成了经常复习和总结的习惯,加强对于学过内容的理解和运用。通过不断地思考和练习,我逐渐掌握了高等数学的基本概念和方法。
第三,高等数学学习给我带来了挑战和成长。作为一名大专学生,我常常面临课业压力和时间紧迫的情况。高等数学作为一门重要的专业课程,需要投入大量的时间和精力来学习和理解。在学习过程中,我经常遇到难题和困惑,但通过自己的努力和老师、同学的帮助,我渐渐克服了困难,并取得了不错的成绩。这不仅让我对自己的能力有了更多的自信,也让我明白只有通过不断地努力和勤奋才能取得好的成绩。同时,高等数学学习也让我更加注重思维的灵活性和创造性,培养了我解决问题的能力。
此外,在高等数学学习中,我结交了很多志同道合的同学。数学学科本身就需要同学之间的合作和交流,而高等数学尤其如此。在课堂上,我经常与同学们一起探讨问题,互相启发和帮助。通过与同学们的交流,我不仅加深了对于数学知识的理解,也开拓了自己的思维和观点。同时,我还通过参加数学社团和相关学术活动,与许多对数学感兴趣的同学们进行了更深入的交流和合作,这对于我的学习和个人成长都有着积极的影响。
综上所述,大专高等数学学习是一段充满挑战和成长的旅程。在学习过程中,我体会到了高等数学的重要性和实用性,通过学习和思考,我逐渐掌握了高等数学的方法和技巧。同时,我也注重与同学们的交流与合作,共同进步。通过高等数学的学习,我不仅积累了知识,更重要的是培养了自己的思维方式和解决问题的能力。我相信,通过不断地努力和学习,我将会在高等数学学习中取得更好的成绩并实现个人的成长。
最热高等数学学后心得(案例22篇)篇三
第一段:引言(150字)。
在大学学习期间,高等数学是我们无法回避的一门课程。对于许多学生来说,高等数学可能是他们第一次接触到抽象的数学概念和复杂的数学运算。然而,通过数学家和教育家的不断努力,高等数学正在变得越来越有趣和易于理解。在我个人的学习过程中,我逐渐领悟到高等数学的重要性和应用场景,并从中获得了许多宝贵的经验和体会。
第二段:兴趣驱动学习(250字)。
我发现,对于高等数学的学习来说,培养兴趣是至关重要的。在开始学习高等数学之前,我对这门课程没有太多的期待。然而,通过与教师的互动和进一步的研究,我开始意识到高等数学是一门实际应用广泛且充满挑战的学科。我发现高等数学在物理、经济学甚至金融学中都起着重要的作用,并且具有许多实用性的应用。为了更好地理解和应用高等数学的知识,我主动参加数学建模和实验课程,并且积极加入数学学术团队。通过这些课程和团队活动,我发现高等数学能够帮助我们解决实际问题,并且在现实生活中起到重要的作用。
第三段:实践驱动理论(250字)。
在高等数学的学习过程中,我体会到实践是巩固理论知识的重要手段。通过解决一系列的习题和实际问题,我逐渐运用所学的数学方法来解决复杂的问题。并在此过程中体会到从纸上计算到实际应用的转换。在学习微积分时,我除了翻阅课本上的例题和习题外,还多次利用数学软件进行计算和模拟,并尝试将所学的理论用于解决实际问题。通过这样的实践过程,我不仅加深了对高等数学理论的理解,还培养了解决实际问题的能力。
第四段:提升逻辑思维(250字)。
高等数学的学习让我逐渐锻炼了逻辑思维能力。通过学习证明方法、推理规则以及数学定理等知识,我逐渐培养了严密的逻辑思维和分析问题的能力。高等数学课程中的证明过程迫使我们思考每一个步骤的合理性和正确性,并提出自己的证明思路。这种思考方式使我从中受益匪浅,不仅在数学领域受益,还在其他学科中应用中受益。
第五段:结语(300字)。
通过高等数学的学习,我逐渐发现抽象的数学世界与现实生活是息息相关的。高等数学的学习让我在思维、逻辑、实践等多个方面得到了全面的提升。通过在数学领域中的探索与研究,我重新定义了对于高等数学这门课程的认知,并且树立起全新的目标和动力。高等数学不仅仅是为了通过考试,更是培养我们终身学习的能力和思维方式的桥梁。在未来的学习和工作中,我相信高等数学所赋予的知识和能力会继续对我产生重大影响。因此,我会继续努力学习高等数学,并将所学应用于实际生活中,为现实问题的解决提供更多有益的思考和方法。
最热高等数学学后心得(案例22篇)篇四
随着大学数学必修课的开展,越来越多的大学生开始接触高等数学。在这一门学科里,我们需要学习和掌握一些更加复杂的数学知识和技能,如微积分、线性代数、概率论等,对于很多人来说,这一系列新的内容会带来许多挑战和困惑。在我的学习中,我也遇到了很多难题,在不断的努力中也渐渐悟出高等数学的精髓,以下是我的学习心得体会。
第一段:认识高等数学的重要性。
对于我来说,学习高等数学首先需要意识到它的实际价值。如今,大数据、人工智能和物联网等前沿领域正在迅速发展,而这些都离不开数学的支撑。高等数学是数学学科发展的一部分,它是从基础数学知识中衍生出来的更加深入和高级的内容,因此我们要认识到学习高等数学的重要性,这是我们在日后的学习和工作中的重要基础。
第二段:掌握基础数学知识。
高等数学需要用到许多基础数学的知识,比如数学分析、数学统计等等,因此我们在学习高等数学之前,必须对这些基础知识进行巩固和学习。在这个过程中,我们可以通过理论学习与实践相结合的方式来加深我们对基础数学知识的理解和应用。
第三段:注重课堂学习。
高等数学的内容相对较为难,而且理论层次比较高,所以在课堂上一定要认真听讲并做好笔记,同时也可以结合课堂练习加深理解和掌握。
第四段:多做题多练习。
在学习高等数学的过程中,我们需要反复练习和巩固刚才所学的知识点。前期我们可以通过课本、教辅、网站等多种方式进行练习,加深对知识点的理解;后期我们还可以通过参与、组队学习、比赛、数学建模等方式形成强大的“练习营”,提升自己学习的深度和广度。
第五段:善于求助。
学习高等数学时,难免会遇到一些不理解的问题,这个时候我们可以向同学、老师、网上信息和书本等寻求帮助,还可以通过线上线下的相关数学社群,找到有共同兴趣和目标的小伙伴,相互交流和思考,集思广益。
总结:高等数学确实是一门很难的学科,但只要我们认真对待,注重基础,听讲练习,多交流多思考,以及善于求助,一定能够取得不小的进步。最后,我希望每个学生都能在高等数学中找到自己的乐趣和价值,为自己的未来打下坚实的数学基础。
最热高等数学学后心得(案例22篇)篇五
不是误导大家武汉大学的教科书实在是很难理解,两本加起来足是一本字典,是编者卖弄的园地,所以强烈建议不要和此书叫板,我曾试过一年完全是浪费时间,即使有同学看懂了,但仍难以对付实战。
我的建议是以战致战,就是通过做历年的考试题的方法顺利通过考试。此法花费时间极小,但可以获得很大的收益,从经济的角度讲就是效益最大化。
具体实施方法:
首先,高高兴兴的将书撕碎,优点有三:1)不给自己浪费时间的机会。2)建立此战必胜的信心。3)心情将更加愉悦。
其次:把各年试卷及答案]收集齐,网上不难找到,书店中也可买到。实在不行我给你个网址。强烈建议从1997年下半年到20xx年上半年共十套试卷,这套模拟题就是葵花宝典,没事就做吧,一遍不行,至少十遍,知道答案不行,必须要知道过程。当你做到第三遍时你就会发现所有试卷的共同之处,每年的试题是等的相似。第五遍第七遍时,你就会因为找不到不会的题而痛苦万分。
最后,是考前不用动笔用脑看题非常快的看上3遍,一个框架会产生在你的大脑中。合格证对于你来说,已经成了一张名片,伸手就拿!
20xx年,在今年进行新的考试。相信要在今年自考的广大群体以进入了金锣弥补的准备当中,小编也会更多的发布一些相关信息希望可以为您提供到帮助。
最热高等数学学后心得(案例22篇)篇六
随着社会的不断发展,人们对于学历的要求也越来越高。为了满足社会对于人才的需求,大专高等数学成了许多大专学生的必修课程。经过一段时间的学习,我深感大专高等数学不仅仅是一门科目,更是一种学习方法和思维方式。通过学习,我体会到了数学的魅力和重要性,并对数学学习有了进一步的认识。
首先,通过学习大专高等数学,我体会到了数学的深奥和严谨。在课堂上,学习这门学科并不仅仅是简单地记住公式和方法,更需要深入理解其中的原理和推导过程。只有通过深入理解,才能将数学的知识运用到实际问题中。例如,在学习微积分时,我们需要理解函数的概念、导数和积分的原理,并能够灵活运用它们解决实际问题。这种深入理解和运用数学知识的能力,不仅对于数学学科本身有益,也对于培养我们的逻辑思维和分析问题的能力有着重要的作用。
其次,大专高等数学教会了我一种系统化的学习方法和思维方式。在数学学习中,我们需要掌握一定的理论知识,并且将其与实际问题相结合,进行动手实践。这种将理论与实践相结合的学习方法,使我逐渐培养起了系统的思维方式。我学会了整合各种知识和技能,将它们应用于解决实际问题。同时,数学学习也培养了我逻辑思维和分析问题的能力,使我能够从各个角度和层面思考问题,提高解决问题的能力。
除了上述的学习方法和思维方式,大专高等数学还帮助我树立了正确的学习态度和价值观念。学习数学需要付出大量的时间和精力,需要细心和耐心去梳理和解决问题。这个过程需要我们坚持和持之以恒,不怕遇到困难,勇敢面对挑战。通过数学学习,我明白了付出不一定能立即获得回报,但是只有付出才可能获得收获。这种正确的学习态度和价值观念不仅对于数学学科有好处,也对于我们的人生和事业发展有着重要的意义。
最后,大专高等数学培养了我一种求知的兴趣和科学精神。数学作为一门科学,有其自身的逻辑和规律。通过学习数学,我能够更好地认识世界和探索事物之间的联系。数学的发展历程也启示我要求真务实,不断追求进步。同时,数学的研究也需要创新和探索精神,这种科学精神培养了我锐意进取的态度和勇于创新的决心。
总的来说,大专高等数学学习的过程是一次探索和进步的过程。通过学习,我体会到了数学的深奥和严谨,学习到了一种系统化的学习方法和思维方式,树立了正确的学习态度和价值观念,培养了求知的兴趣和科学精神。这些经验和体会将伴随着我继续学习和成长的道路,为我未来的发展和实现人生价值提供坚实的基础。
最热高等数学学后心得(案例22篇)篇七
随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。
以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因.学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。
1)从正反两个层面理解概念。
我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止.只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的.还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。
2)学与问。
发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。
3)做习题与想习题。
学习数学,不做习题是绝对不行的.因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果.经过又一次正反两个层面的开掘.思考深入了,学习的兴趣也会逐步培育起来。
最热高等数学学后心得(案例22篇)篇八
第一段:引言(120字)。
高等数学作为大学数学课程中的一门重要学科,不仅是理工科学生的必修课,更是培养学生分析解决问题能力的重要途径。在学习高等数学的过程中,我感受到了数学的美妙与魅力,同时也深刻体会到了数学学习的重要性。通过这门课程的学习,我不仅提高了自己的数学水平,更具备了解决实际问题的能力,下面将分为逻辑推理能力的提升、问题解决能力的培养、批判性思维的养成、严密的思维训练以及团队合作精神的培养五个方面,详细论述我在高等数学学习中的心得体会。
第二段:逻辑推理能力的提升(250字)。
高等数学学习需要运用各种公式定理,进行推导证明。在这个过程中,我不断锻炼了自己的逻辑推理能力。老师引导我们学会分析问题,从多个角度去思考,利用数学方法解决问题。通过数学定理的证明,我更加深入地理解了逻辑推理的重要性以及问题求解的思路。此外,在高等数学的学习过程中,我还学会了如何将复杂问题分解为简单子问题,逐步推导出一个完整的解决方案。这一过程的锻炼不仅提高了我的数学素养,还培养了我的逻辑思维能力,使我能够更好地应对其他学科的学习和实际问题的解决。
第三段:问题解决能力的培养(250字)。
高等数学学习强调实际问题的建模与求解,培养学生解决实际问题的能力。在课堂上,我亲身体验了数学在解决实际问题中的作用。通过案例分析和问题解决讨论,我学会了将抽象概念和公式与实际问题相结合,找到问题的关键点,提出有效的解决方案。此外,高等数学课程还让我了解了数学与其他学科的交叉点,从而拓宽了视野,帮助我更好地理解和解决其他学科的实际问题。
第四段:批判性思维的养成(250字)。
高等数学学习强调学生的批判性思维能力的培养。在学习过程中,我发现数学不仅有固定答案,还有多种解决路径和解释方法。通过解析问题的不同方面,从不同的角度思考,我逐渐养成了批判性思维的习惯。我开始质疑问题是否被正确解决,是否有更好的方法,这种思维方式不仅在高等数学学习中帮助我更好地理解概念和定理,还在其他学科和实际生活中使我更加理性和客观。
第五段:严密的思维训练与团队合作精神的培养(320字)。
高等数学中的复杂定理和抽象概念要求学生掌握严密的思维能力。在解题过程中,我不得不重复思考,审查每一个环节,确保每个推导步骤的准确性和严密性。这过程虽然艰辛,但成功地提升了我的思维严密性和细心程度。另外,高等数学学习中的小组讨论和团队合作也给了我很大的启示。通过与同学合作,每个人可以带来不同的思路和见解,我们可以互相学习、互相鼓励,并共同解决问题。这种团队合作精神不仅在高等数学中得到培养,还可以应用到其他学科和实际工作中。
结尾:总结(90字)。
总的来说,高等数学的学习不仅提高了我的数学水平,更重要的是培养了我解决问题的能力、批判性思维以及团队合作精神。这些能力将在我的未来学习和工作中发挥重要作用。通过高等数学的学习,我明白了数学不仅仅是一种学科,更是一种思维方式和处理问题的工具。
最热高等数学学后心得(案例22篇)篇九
随着科技日新月异的发展和电脑无孔不入的应用。高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。
以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。
我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的。还是充分的'?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。
发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。
学习数学,不做习题是绝对不行的。因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘。思考深入了,学习的兴趣也会逐步培育起来。
最热高等数学学后心得(案例22篇)篇十
近日,我参加了一场关于高等数学学科的讲座,主题为“数学的力量与美”,这场讲座给我留下了深刻的印象。在这次讲座中,我不仅对高等数学学科有了全新的认识,还深刻体会到了数学的力量和美。
首先,讲座中老师向我们介绍了高等数学学科的基本概念和应用。高等数学是一门基础学科,是其他学科的必修课。它的基础概念包括函数、极限、导数、积分等。我以前对高等数学只是停留在书本上的理论知识,而通过这场讲座,我了解到高等数学不仅仅是一种工具,更是一种思维方式和解决问题的方法。高等数学在物理学、经济学、工程学等学科中都发挥着重要的作用,它能够帮助我们解析和解决实际问题,让我们对世界有了更深入的理解。
其次,讲座中老师生动地讲解了高等数学的美。数学被誉为科学中的皇后,因为它在逻辑推理和证明方面具有独特的魅力。通过演示一个个数学问题的解法,老师告诉我们数学是如何让我们感受到思维的乐趣和创造力的。例如,当老师讲解了一道复杂的微积分问题时,他用简洁而高效的方法解决了它,让我感受到了数学的美妙之处。数学在解决问题的过程中,既有逻辑性和严谨性,又有创新和想象力。这些美妙的特性不仅让我对高等数学产生了浓厚的兴趣,也让我对数学这门学科充满了热爱。
第三,讲座中老师向我们介绍了数学在实际生活中的应用。数学不仅在学科中有重要作用,在实际生活中也起着至关重要的作用。老师通过实际案例向我们展示了数学在金融、交通、通信等领域的应用。例如,数学在金融中可以用来计算利率、股票等;在交通中可以用来优化路径规划、交通流量控制等;在通信中可以用来进行数据加密和压缩等。这些实际应用让我对高等数学的重要性有了更深刻的认识,我意识到数学不仅能够帮助我们解决学术问题,还能够服务于社会和人类进步。
第四,讲座中老师告诉我们数学的学习方法和技巧。数学是一门需要不断练习和思考的学科。老师通过实例向我们展示了一些解题的技巧和方法,在解题过程中强调了逻辑和推理的重要性。他还提醒我们要坚持练习,不断积累经验。通过这些方法和技巧的分享,我对数学的学习有了更清晰的方向和方法,我相信通过持续的努力和实践,我能够在高等数学学科中取得更好的成绩。
最后,这次讲座给我留下了深刻的启发,我意识到高等数学不仅仅是一种学科,更是一种生活态度。数学教会我们逻辑思维和分析问题的能力,让我们能够从更广阔的角度看待问题。同时,数学也告诉我们要追求美和完美,保持对知识的渴望和追求。我将会倍加珍惜数学这门学科,努力学习,不断提高自己的理解和运用能力,以便更好地服务于社会和人类的发展。
综上所述,这次关于高等数学学科的讲座让我受益匪浅,不仅让我对数学有了更深入的了解,还让我认识到数学的力量和美妙之处。数学不仅是一门学科,更是一种思维方式和解决问题的工具。通过学习和应用高等数学,我们能够更好地理解世界,解决实际问题,同时也能够享受到数学的乐趣和美感。我相信,在今后的学习和生活中,我会更加努力地学习和运用高等数学知识,不断提升自己的数学水平和思维能力。
最热高等数学学后心得(案例22篇)篇十一
第一段:学习高等数学的动机与目标(200字)。
在大专阶段学习高等数学是一个必修课程,我最初对于高等数学的学习并无太多的兴趣,觉得这门课程枯燥且难以理解。然而,我也明白数学是现代科学的基础,掌握高等数学可以提高我的逻辑思维和解决问题的能力,因此我决定认真学习这门课程。我的目标是通过学习高等数学,提高我的数学水平以及其他与数学相关的科目的学习成绩。
第二段:学习过程中的困难与挑战(300字)。
在学习高等数学的过程中,我遇到了很多困难和挑战。首先,高等数学的概念和公式繁多,记忆起来非常困难。其次,高等数学中的推理和证明需要较强的逻辑思维能力,而这正是我在初中和高中时期比较欠缺的。同时,高等数学的题目多样化,需要不同的解题方法和技巧,这也使得我在解题过程中感到有些迷茫。
第三段:克服困难的方法与策略(300字)。
为了克服学习高等数学中的困难,我采取了一些方法和策略。首先,我建立了坚实的数学基础,通过复习初等数学的知识,巩固自己的数学基础知识。然后,我努力培养自己的逻辑思维能力,通过做逻辑推理题和数学证明题来提高自己的逻辑思维能力。此外,我还积极寻找各种学习资料,包括参考书、习题集和教学视频等,以拓宽自己的学习资源,从不同的角度理解和掌握高等数学的知识。
第四段:学习高等数学的收获和成长(300字)。
通过学习高等数学,我逐渐克服了困难,提高了自己的数学水平。我发现,高等数学中的概念和公式并不是孤立的知识点,它们都与实际问题密切相关,学习数学可以帮助我更好地理解和解决实际问题。同时,我通过解题的过程培养了自己的逻辑思维和解决问题的能力,这些能力将对我未来的学习和工作带来很大的帮助。
第五段:对学习高等数学的展望与建议(200字)。
学习高等数学的过程虽然充满了挑战,但我从中体会到了数学的美妙和乐趣,也收获了很多。我想将来继续深入学习数学,尝试更多的数学领域,提升自己的数学能力和理论水平。对于正在学习高等数学的同学们,我建议你们要保持积极的学习态度,克服困难和挑战,相信自己一定能够掌握好这门课程。此外,多与同学进行讨论和交流,相互鼓励和帮助,可以加深对知识的理解和巩固。最后,勤动手,多做习题和练习,通过实践来巩固和应用所学的知识,这样才能真正掌握好高等数学。
最热高等数学学后心得(案例22篇)篇十二
在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。
大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。
在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。
经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。
在选课的时候,我发现还能选修高数,这次,我不想再错过。我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。”是的,我选择重新认识高数,我要为自己过去的罪行赎罪。
再次接触高数,捧着2年前让我头疼的课本,我发现其实真的可以懂,老师讲的比较简单,思路也很清晰。重新认识了牛顿莱布尼兹的微积分,惊叹他们天才般的才智,运用无限的模糊理论,可以解决许多医学上的问题,我才觉得高数真的是充满了魅力和魔力,它能让我们把简单的问题先给复杂化最后再简单化,培养我们的思维,更智慧巧妙地解决生活中的问题。学好了高数,就像给你增添了一双隐形的翅膀,你拥有了更开阔缜密的思维,许多问题突然变得迎刃而解了。
当然,学好高数并非那么简单,但探索其中的奥秘确实非常有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数,感谢高数,这次不仅仅因为它是高“树”,而是我明白,攀登上这棵高树,我看见了前所未有的迷人风景。
最热高等数学学后心得(案例22篇)篇十三
我们要遵循由浅入深的原则,先将书本上的知识基础打牢靠,一定要重视基础知识的学习,不要过于去追求技巧以及方法,近几年考研真题对基础知识的考察时很频繁的,像刚刚过去的_年考研数学中就有关于用导数定义来推导两个函数乘积的导数。所以,等我们把基础知识掌握牢靠后,再去学一些技巧以及方法。因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
第一,我们强调学习而不是复习。对于大部分同学而言,由于高等数学学习的时间比较早,而且在大学课堂上学习所针对的难度并不是很大,再加上一些知识的遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
第二,对于复习顺序的选择问题。我们建议先学高等数学再学线性代数,然后再学概率论与数理统计。我们知道高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课一起学习,毕竟三门课是有所区别的。我们一定要学一门就先学精了再继续学其他的,倘若你不学透就开始学其他的,每一门都有好多不懂的地方,到时你反而会耗费更多的时间去补前面的知识。当然,你确实也可根据自己的特殊情况调整复习顺序。
第三,注重基本概念、定理和方法的掌握。同学们一定要结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。一些学生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,第一阶段学习必须要在数学基本概念、基本定理、重要的数学原理、重要的数学结论等方面加强学习。
第四,加强练习,多多总结、归纳解题思路以及方法和技巧。数学考试主要就是解题,而考研数学中的基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。我们通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
第五,正确理解答案的作用。我们在学习的过程中一定要力求理解和掌握所有要考的知识点,做题的过程中一定不要先看答案,如果题目实在做不出来了,再看答案,看明白之后自己一定要把题目重新独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻,才不会忘的过快,否则是无用的。
第六,每一题亲力亲为,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
在考研的路上,你肯定会遇到很多困难,我们知道身体是革命的本钱,健康的身体对于我们是很重要的,所以平时多注意饮食和作息时间,而明确的学习方法和对考研的那份坚持,是你成为赢家的第二本钱。
最热高等数学学后心得(案例22篇)篇十四
不是误导大家武汉大学的教科书实在是很难理解,两本加起来足是一本字典,是编者卖弄的园地,所以强烈建议不要和此书叫板,我曾试过一年完全是浪费时间,即使有同学看懂了,但仍难以对付实战。
我的建议是以战致战,就是通过做历年的考试题的方法顺利通过考试。此法花费时间极小,但可以获得很大的收益,从经济的角度讲就是效益最大化。
具体实施方法:
首先,高高兴兴的将书撕碎,优点有三:
1)不给自己浪费时间的机会。
2)建立此战必胜的.信心。
3)心情将更加愉悦。
其次:把各年试卷及答案]收集齐,网上不难找到,书店中也可买到。实在不行我给你个网址。强烈建议从1997年下半年到20xx年上半年共十套试卷,这套模拟题就是葵花宝典,没事就做吧,一遍不行,至少十遍,知道答案不行,必须要知道过程。当你做到第三遍时你就会发现所有试卷的共同之处,每年的试题是等的相似。第五遍第七遍时,你就会因为找不到不会的题而痛苦万分。
最后,是考前不用动笔用脑看题非常快的看上3遍,一个框架会产生在你的大脑中。合格证对于你来说,已经成了一张名片,伸手就拿!
最热高等数学学后心得(案例22篇)篇十五
对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
(2)复习顺序的选择问题。
我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。
(3)注意基本概念、基本方法和基本定理的复习掌握。
其他一切都是空中楼阁。
(4)加强练习,重视总结、归纳解题思路、方法和技巧。
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
(5)不要依赖答案。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
(6)强调积极主动地亲自参与,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
最热高等数学学后心得(案例22篇)篇十六
由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
第六,掌握学习规律。
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。
这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。
最热高等数学学后心得(案例22篇)篇十七
不是误导大家武汉大学的教科书实在是很难理解,两本加起来足是一本字典,是编者卖弄的园地,所以强烈建议不要和此书叫板,我曾试过一年完全是浪费时间,即使有同学看懂了,但仍难以对付实战。
我的建议是以战致战,就是通过做历年的考试题的方法顺利通过考试。此法花费时间极小,但可以获得很大的收益,从经济的角度讲就是效益最大化。
具体实施方法:
首先,高高兴兴的将书撕碎,优点有三:1)不给自己浪费时间的机会。2)建立此战必胜的信心。3)心情将更加愉悦。
其次:把各年试卷及答案]收集齐,网上不难找到,书店中也可买到。实在不行我给你个网址。强烈建议从1997年下半年到2002年上半年共十套试卷,这套模拟题就是葵花宝典,没事就做吧,一遍不行,至少十遍,知道答案不行,必须要知道过程。当你做到第三遍时你就会发现所有试卷的共同之处,每年的试题是等的相似。第五遍第七遍时,你就会因为找不到不会的题而痛苦万分。
最后,是考前不用动笔用脑看题非常快的看上3遍,一个框架会产生在你的大脑中。合格证对于你来说,已经成了一张名片,伸手就拿!
最热高等数学学后心得(案例22篇)篇十八
高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。
一、高等数学教学中学生存在的误区1.误区一很多学生认为学数学没有用。
高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什么用,在将来实际工作中也用不到数学。
2.误区二高等数学具有很高的抽象性,很多学生觉得学也学不会。
现在学生不愿意动脑、动笔,碰到题目就在想答案。往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。
3.误区三学生习惯于用中学的思维来解题。
很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。随着学习的深入学生发现题目越来越不会做。
二、提高高等数学教学质量的方法1.端正学生学习态度。
许多同学认为,考上大学就可以放松了,自我要求标准降低了。只有有了明确的学习目标,端正学习态度,才能增加学习高等数学的动力。教师要以身作则,这要求教师热爱数学,对每节课都要以饱满的激情、对数学美的无限欣赏呈现在学生面前,教师积极地态度从而感染学生学习高等数学的热情。部分同学在应试教育的影响下,应经形成了消极的数学态度,教师还应该全方位、多角度扭转学生学习态度,如课下谈心谈话、建立互助兴趣小组、“一对一”结对子等方法,提高学生学习数学的动力。端正学生的学习态度首先从数学字母的写法、发信做起,很多学生古希腊字母不会写也不会读,上课多练习几遍,老师在做题过程中要注重解题的每一步骤,告诉学生每一步骤的重要性,做题中感受数学题的美。
2.激发学生学习兴趣。
兴趣是最好的老师,只有有了学习高等数学的兴趣,学生才有了学习动力。在教学过程中,可以穿插一些关于数学的历史,数学家的故事,数学文化,来激发学生的兴趣。如定积分的讲解时,自然引入牛顿、莱布尼茨两位数学家的故事。教师在课堂讲解时,把抽象的问题具体化,通过几何画图提高学生的理解能力,这样学生才更容易接受。
3.提高教师自身素质。
教师是课堂教育的主导者,是良好课堂氛围的主要营造者,要想学生紧跟教师讲课的思路,教师必须具有良好的人格魅力和深厚的专业功底。这就要求教师一方面要提高自身的文化底蕴,多读一些与另一方面刻苦专研专业知识、完善知识结构、提高教育教学能力,只有做到这样,教师的课堂教育才能吸引学生,课下学生才愿意并主动与教师交流、沟通。教师在上课的时候要身体力行,做题要在步骤上下功夫,解释每一步骤的重要性,既要用最少的步骤把题做完,又要讲解每一步骤的重要性。这样虽然浪费了一点时间,但是学生还是会做的,同时学生也得到了怎样去做题以及真正的理解数学题,并从中发现数学美,时间长了能培养学生良好的数学兴趣、数学能力和创新能力。对所讲授的课程要有深入的了解,知识的内在联系及在学生专业上的应用要有所了解,可以给学生提一提,以便引起学生足够的重视。
4.创新教师教学方法。
好的教学方法能激发学生思维能力,启迪学生的思维悟性。教师在教学方法上进行创新能有效改善课堂教学的效果。如教师在讲授极限时,可以采用情景教学方法,把抽象的定义、定理与实际生活相联系,营造学生认知悬念,从而激发学生自主探索的积极性,从而提高学生思维能力和发现、分析问题的能力。在教学空闲的时候、或者学生比较累的时候、或者在讲到某一个问题时,可以讲一些实际的东西。如在刚开始学极限时,现在学生都在教学楼上课,教室里到处可见支撑楼的柱子。柱子不能太细,细了楼就有可能倒掉,也不能非常粗,那样虽然结实了,但是浪费材料,建筑商也不会同意。这样柱子肯定要通过数学计算得到一个合理的数值,既要能承重又要节约材料,这个确定的数就可以认为是一个极限。
5.建立良好的师生关系。
在教育教学活动中,良好的师生关系是保证教育效果和质量的前提。新时代的大学生具有自我意识强,个性张扬等特点,要提高课堂教育效果,必须建立良好的师生关系。只有师生间相互了解、相互尊重、相互赏识,把教学过程看做是教师与学生的交流、交往过程,才能建立轻松、和谐的课堂氛围,从而才能提高课堂教育效果和教学质量。教师在教学的过程中,要学会换位思考,站在学生的角度估计讲授问题的难易程度。对学生容易出错或者经常犯错误的地方,上课要强调知识的重要性,举例说明让学生理解知识点及了解出错的原因。
6.重视作业中存在的问题。
作业是学生学习知识好坏的一面镜子,虽然现在学生有抄袭作业的现象,但是大部分学生还是自己做作业。从作业中可以看出学生对知识掌握的程度,没掌握好的话,想办法用最简单的题目来说明问题。也许作业有可能做的非常好,这就要求教师对知识有很好的理解,对学生容易出错的地方,上课时可以提问学生做过的题目或者让学生课前上黑板重新做。这样一学期下来,学生对难点重点会掌握的很好,考试成绩自然会很好,同时对高等数学理解的程度也会很高。学生取得了好的成绩,对高等数学了解的多了,自然对高等数学学习兴趣提高了。在以后的学习过程中,自然会对各种数学课更加努力的去学习,从而对其本专业课也起到了很好的促进作用。最终学生会发现大学生活是非常快乐的,学到了很多知识,学校也培养出了合格的大学生。
最热高等数学学后心得(案例22篇)篇十九
在临考前约一个月的时间内,考生对前阶段复习的内容及各种方法进行归纳,使之条理化、系统化,便于记忆。这是考试时能够得心应手地使用数学知识的关键。这段时间再重新看一遍近年来的考试真题,某些模拟试题等。并特别注意做题后的分析和总结,以提高自己的'答题速度,合理分配各类题的答题时间,便于在考场上正常发挥自己的水平。
在复习的过程中遇到比较重要的知识点,需要记忆背诵的公式、法则等等,要随时记录。做题心得、常考的题型做题方法、技巧随时记录下来,慢慢的在做题过程当中,提炼出自己的做题方法和思路。每复习一段时间,复习一章或是两章,要回过头来总结一下本章节知识,看一下做的笔记当中的重要知识点和做题方法技巧,做到每一章节复习都不留死角。也可以对于考研常考的题型、知识点多找几种方法,这样不仅可以锻炼灵活运用知识方法的能力,更能在脑海里回顾复习已经复习的知识,进一步加强基础。
大家要学会归纳,善于总结,使知识系统化。在这个阶段还应加强综合训练,以提高自己用所学数学知识分析问题和解决问题的能力。
复习期间一定要有良好的心态。多和周围的同学交流。是在紧张的复习期间,我们需要革命的友谊和情感的交流。因此,建议大家找研友,避免孤军作战,有研友的好处是:信息资料共享、共同解决问题、相互鼓励、减压,也不至于太闷。另外就是要有坚持不懈的精神,考研路漫长,如果没有坚持不懈精神支撑下去,结果只能是半途而废。考研不仅是考的知识,考的更是品质,相信经过考验的磨练,在今后的生活当中,这种考研精神也会对大家有很大的帮助。如果能够认认真真复习,坚持到最后,很大一部分同学最后都会取得成功。
最热高等数学学后心得(案例22篇)篇二十
高等数学是大学重要的数学基础课程,涉及到微积分、线性代数、概率论与数理统计等多个学科领域,为学生的数学素养和综合能力的提高带来了巨大的帮助。如今,我已经学习高等数学一年多,并考取了高分。在学习中,我积累了一些心得体会,现在愿意分享给大家。
一、认真理解概念。
高等数学中包含了大量的数学概念,这些概念是该学科的基础。我们要经常复习、深刻理解这些概念,才能更好地庖阐数学原理,推导出数学公式。对于某些难以理解的概念,可以寻找一些相关的实例进行解释,或者和同学一起讨论,共同掌握这些概念,这样才能更好地理解后面的内容。
二、透彻掌握习题。
高等数学的习题类型较多,需要我们不断地练习,从而巩固和提高自己的掌握程度。在做习题时,我们要遵循“由易到难”的原则,先做容易的,逐渐增加难度,提升自身的解题水平。做题时,也要注意拓展视野,不要仅局限于老师讲授的范围,多尝试一些新的方法和角度。
三、整合思维方式。
高等数学的学习需要我们具有一定的数学思维能力,这也是高等数学和初等数学一份四的区别所在。在学习中,我们要注重培养自己的数学思考能力,学会用多种方式解决一道问题,整合不同的思维方式,拓展自己的思路。这种能力的培养要靠平时的训练,结合习题、考试和解题课等多种形式进行。
四、注重细节处理。
在高等数学课程中,一个小小的细节往往决定着整道题的成败。因此,在学习高等数学时,我们必须将注意力集中在题目的细节上,严谨地对待每一步计算,避免出现计算错误。同时,在做习题和考试时,我们也要注意填写卷面和计算器的使用规范,这样才能避免走弯路,保证高分通过。
五、多方面寻求帮助。
高等数学作为一门比较重要的基础课程,难度比较大,我们学习中难免会遇到困难。遇到问题时,我们应该多方面寻求帮助,可以找老师、同学或者其他渠道,与他人交流和探讨,相互帮助提高解决问题的能力。此外,也要注重查找有关的参考书籍和一些网上的研究综述,引领自己更快地掌握课程要点。
总之,高等数学虽然难,但只要认真刻苦,多方寻求帮助,注重方向且扎实整合思维方式,严谨处理学习细节,逐渐提升自己的数学素养和思维能力,就可以取得好成绩,为自己的学业和未来的发展提供坚实的保障。
最热高等数学学后心得(案例22篇)篇二十一
随着科技日新月异的发展和电脑无孔不入的应用,高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。
以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。
我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的.空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。
古人说:学起于思,思源于疑,这话道出了做学问的过程中发现问题提出问题的重要性。高等数学的讲课进程一般都比较快的,课堂上讲的内容不能完全听懂是正常的现象,同题在于听不懂看不懂的内容是随意放弃呢还是努力请教老师请教同学直到学懂为止。如果轻易放弃,时间一长就会失去学习的信心,所以一定要以锲而不舍的精神边学边问。不过这样的提问还只是被动的,主动的提问应该是自己在学习过程中去发现同题。如何才能发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。
学习数学,不做习题是绝对不行的因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘,思考深入了,学习的兴趣也会逐步培育起来。
最热高等数学学后心得(案例22篇)篇二十二
数学应该是能拉大考生差距的一门考试科目。
数学题型不多,填空,选择和计算,不过说起来只有两种:计算题和概念题。填空和计算都可以归为计算,按照目前得考试趋势,选择就是考概念了,很灵活得考。
在我看来,数学的复习层次性比较强,可以比较明确的分为第一遍,第二遍,第三遍等等。因此,复习数学总是要在不同的阶段买一些指导书的,下面先说说我所能了解的指导书:
市场上大部头的书比较多的是陈(陈文登),李(二李)的书,西安的龚(龚冬保)老师也有书出。
陈的书我感觉比较适合数学基础比较好的同学,也就是你在学习高等数学的时候考试能有70分上下的同学,李的书比较适合面比较广,也就是说这本书的出发点不是很高。大家可以看一下,陈的书概念和例题用的篇幅之比要比李的书小,也就是说李的书相对注重概念的讲解。龚的书感觉上不能作为复习的主要资料,只能作为辅助练习用。
在写书方面,陈的书主要是在开篇给出各章的主要内容概念定义,然后是进行各种题型的练习,因此看完各章概念然后做题的时候可能会感觉到比较苦闷,尤其是单元微积分方面,都是一些微分积分运算,做起来的感觉是在不是很好,在这个方面,李的书也不是很好受,虽然李的书是对各种题型归纳了比较好,然后给出例题,这个可能就是单元微积分的特点,如果你感觉实在难受,也可以少做点书上的例题,但起码的应该能熟悉各种题型,大约知道该怎么解;然后是向量方面,李和陈的书没有太大的区别,不过陈的书总结比较好,李的书比较简单;然后是微分方程部分,陈的书里提出了一种高等数学课本(同济的教材和清华的盛编的教材)上没有出现过的方法,个人感觉不是很好,建议不要用,还是用课本上介绍的方法比较好,老实点,呵呵,解题感觉比较踏实,但是陈的书总结起来比较全面,许多公式给出来比较一目了然,李的书在微分方程方面相比较差一点;接着就是多元微积分,这个是考试的重点和难点(今年例外),建议如果你高等数学这方面没有学好话,不要急着看陈的书,不然你肯定是云里雾里的,李的书在这个方面要好点,因为他给出的这方面的知识都是比较基本的知识,没有很大的难点,看看也许能看懂;接着应该是其他一些小知识点了,建议找李的书,因为他给出的比较具体,不像陈的书都是和其他大知识点结合起来讲,不能从基础上讲明白道理。在学习高等数学的时候建议大家能够自己把公式推导一遍,免的考试的时候太紧张忘了公式也能从基本的公式一步步推导出来。推导公式的过程也就是对原先的知识点进行总结回顾的过程,因为一些大点的公式也是由小公式演化出来的,给个例子,在多元微积分了里,格林公式知道怎么出来的吗,体面线积分的关系,都应该自己推导一遍,微分方程里的解法怎么出来的呢?在基本的公式的导出的过程中得到重要的常用公式。为什么说龚的书不是很好,一方面他给出的概念讲解比较少,另一方面例题也不够多,但是他给出了很多解题的精妙方法,有能力的同学看看学学很好的啊!!
线性代数方面:强力建议李的书,线性代数知识点多但是各个知识点又是连贯的,李的书从最基本的出发,给出各个知识点的详细的讲解,是逐步的提高深入,对于透彻理解各个知识点有很大的帮助,在看完一遍李的书后,应该在从头继续再看一遍,因为你不能一次就接受这么多的内容,第二遍看完,你应该能从最基本的|a|=0推导到线性代数的最后一章的公式,我当时推出的公式用了整整一张a4纸。然后你可以看陈的书了,作为检验自己的复习成果,这样子,三遍下来,相信你的线性代数水平有很大提高了!线性代数是慢慢推导出来的!
概率方面:陈的书和李的书没有太大的区别,起码我没有看出来,欢迎补充!
陈还有两本相当于习题集的资料,个人认为如果你有时间的话,不如把他的那本大部头多看一遍,效果会比你看这本数好多了。陈的模拟试卷,我做了,感觉题目是很好,不过都是老题目,没有什么比较新鲜的样子,也比较简单,10套数学一10套数学二放在一起,如果你水平不怎么样的话,就做这个。
李有400题,相信大家知道的很难,不过个人认为题目非常好,不是怪题,是好题,就是难了,因此数学想拿高分的话,就做这个,高分无望的话,做陈的。
李还有一本冲向135分的书,不厚,也是讲习题的,主要是针对复习后面的阶段,帮你回忆检验自己的知识点的,如果你复习比较快,可以看看这书,题目一般,不过知识点一般都讲到,做了也算是给自己心理平静些。
有北京航空航天大学出的李沛恒的试卷,很好,推荐,题目不难,而且很真题比较象,题型也比较丰富。
有盛祥耀出的数学一20套试卷,这个也是我发现20套题全是数学一或全是数学二的书,有些题目还是比较好的,难度比陈的大,比李的400题小,由于题目较多,因此有些试题的质量不是很高,不过可以和李沛恒的试卷相媲美。推荐中。
以上两套题适合于数学成绩中等上的同学,把这题做了,会有感觉的。还有赵达夫出的一套试卷,5套,我前年看过,比较好,推荐中,不过不知道今年有没有,不过到是看到他出的习题集,就是把选择填空和计算编在一起的书,个人建议不要买,因为我买了,我只做了选择填空的一部分,因为没时间,而且题目重复性比较大,自认为做题很快的我也没有时间做完哦!
黑同学也有书,没感觉,个人对他没好感。大家自己看着办。
基础不好的同学先:课本加盛祥耀(清华出版)辅导练习(二个月看完,不要9月的时候还看这个)。
然后基础较好的但概念不很强的同学,李的辅导书概念较好的同学:陈的辅导书建议连续陈的试卷10套测试自己的水平,现在应该是11月中旬。
然后是辅导书继续一遍,速度快点,但不要太快,不然会没有收获的,一个多月,中间夹着盛祥耀的试卷做做然后建议李沛恒的试卷测试自己,或是选择400题,看大家自己的复习程度。
如果你现在还有一个月的时间,那135分的书看看。
主要复习数学时,不要一段时间光做题,应该做题夹看辅导书的概念。
最后搞点什么什么的模拟题啊之类的,已经不是提高了,熟练而已。
(一)背书,但我说的背书不像英语中的背,一个星期花二个小时背诵所学的公式,以免考试紧张忘了公式,丑大了!但更重要的是再做题中背诵公式。
(二)推导从最简单的公式推起,把与之相关联的各个公式知识点都写出来,能从高等数学的知识写到有关联的线性代数知识吗?我能啊!你写的越多说明你对知识的掌握也就越丰富。
(三)不要看书数学是做出来的,不是看出来的,因此如果说你是在复习数学的话,手上应该有笔和纸。
(四)不要背诵不管三七二十一,……,要的是你脑袋中的自然反映,这个题怎么做。
(五)能找找你的高等数学老师吗,老师最喜欢答疑了,老师很厉害的哦!老师讲解的也很透彻的哦!打破沙锅问到底!
(六)复习时不要管大纲怎么说(数学一),市场上出书的老师早就把大纲研究了然后才写书的。
(七)花哨的解法不要学,也许有时候你从某某书上看到了一种新奇的解法,不要学,想想能不能用普通方法代替?花哨的解法需要特定的条件,特定的环境的!我有一本笔记本,记录了我看的新奇解法,(数学杂志上有的是),可考试时用不着,因为这个是研究生入学考试不是奥林匹克!
如果你在上辅导班之前已经把数学的整个内空复习了一遍,那上上无所谓如果你上班之前对数学基本给忘了,不要上。呵呵!!!!!!